A general mathematical model for describing the geometries and the geometric characteristics of meshing tooth profiles of planar gears is established. The function of pressure angle in the angular displacement of gears, called the pressure angle function (PAF), is introduced to characterize this model. The different tooth profiles and their geometric properties could be generated and analyzed logically and systematically by using this model and defining various PAFs. This new method is applicable to any type of gear pairs including circular or noncircular. In addition, by using this method, it is relatively easy to realize the desired geometrical and mechanical properties into the design.

1.
Buckingham
,
E.
, 1949,
Analytical Mechanics of Gears
,
McGraw-Hill
,
New York
.
2.
Litvin
,
F. L.
, and
Tsay
,
C. B.
, 1985, “
Helical Gears With Circular Arc Teeth: Simulation of Conditions of Meshing and Bearing Contact
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
107
, pp.
556
564
.
3.
Litvin
,
F. L.
, 1989,
Theory of Gearing
,
NASA
,
Washington, DC
.
4.
Litvin
,
F. L.
, 1994,
Gear Geometry and Applied Theory
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
5.
Chang
,
H. L.
, and
Tsai
,
Y. C.
, 1992, “
A Mathematical Model of Parametric Tooth Profiles for Spur Gears
,”
ASME J. Mech. Des.
0161-8458,
114
, pp.
8
15
.
6.
Dunkerley
,
S.
, 1910,
Mechanism
,
Longmans, Green
,
London
.
7.
Gobler
,
H. E.
, 1939, “
Rollcurver Gears
,”
Trans. ASME
0097-6822,
61
, pp.
223
231
.
8.
Rappaport
,
S.
, 1960, “
Elliptical Gears for Cyclic Speed Variations
,”
Prod. Eng. (N.Y.)
0032-9754,
2
, pp.
68
70
.
9.
Kuczewski
,
M.
, 1988, “
Designing Elliptical Gears
,”
Mach. Des.
0024-9114,
60
, pp.
116
118
.
10.
Cunningham
,
F. W.
, and
Cunningham
,
D. S.
, 1973, “
Rediscovering the Noncircular Gear
,”
Mach. Des.
0024-9114,
45
, pp.
79
86
.
11.
Benford
,
R. L.
, 1968, “
Customized Motions
,”
Mach. Des.
0024-9114,
40
, pp.
151
154
.
12.
Bernard
,
J.
, and
Freudenstein
,
F.
, 1990, “
Generation of Linear Reciprocating Motion Using 2:1 Internally Meshing Noncircular Planetary Gearing
,”
21st Biennial ASME Mechanisms Conference in Chicago
, pp.
47
55
.
13.
Tong
,
S. H.
, and
Yang
,
D. H.
, 1998, “
Generation of Identical Noncircular Pitch Curves
,”
ASME J. Mech. Des.
0161-8458,
120
, pp.
337
341
.
14.
Yang
,
D. H.
,
Tong
,
S. H.
, and
Lin
,
J.
, 1999, “
Deviation-Function Based Pitch Curves Modification for Conjugate Pair Design
,”
ASME J. Mech. Des.
0161-8458,
121
, pp.
579
585
.
15.
Tsay
,
M. F.
, and
Fong
,
Z. H.
, 2005, “
Study on the Generalized Mathematical Model of Noncircular Gears
,”
Math. Comput. Modell.
0895-7177,
41
, pp.
555
569
.
16.
Figliolini
,
G.
, and
Angeles
,
J.
, 2005, “
Synthesis of the Base Curves for N-Lobed Elliptical Gears
,”
ASME J. Mech. Des.
0161-8458,
127
, pp.
997
1005
.
17.
Chang
,
S. L.
, and
Tsay
,
C. B.
, 1998, “
Computerized Tooth Profile Generation and Undercutting Analysis of Noncircular Gears Manufactured With Shaper Cutters
,”
ASME J. Mech. Des.
0161-8458,
120
, pp.
92
99
.
18.
Gray
,
A.
, 1997,
Modern Differential Geometry of Curves and Surfaces With Mathematica, 2nd ed
,
CRC
,
Boca Raton, FL
, pp.
185
187
.
You do not currently have access to this content.