A systematic methodology for the design of a statically balanced, single degree-of-freedom planar linkage is presented. This design methodology is based on the concept of conservation of potential energy, formulated by the use of complex number notations as link vectors of the linkage. By incorporating the loop closure equations and the kinematic constraints, the gravitational potential energy of the system can be formulated as the function of the vectors of all ground-adjacent links. The balance of the gravitational potential energy of the system is then accomplished by the elastic potential energy of a zero free-length spring on each ground-adjacent link of the linkage. As a result, spring constants and installation configurations of the ground-attached springs are obtained. Since the variation in the gravitational potential energy of the linkage at all configurations can be fully compensated by that of the elastic potential energy of the ground-attached springs, this methodology provides an exact solution for the design of a general spring balancing mechanism without auxiliary parallel links. Illustrations of the methodology are successfully demonstrated by the spring balancing designs of a general Stephenson-III type six-bar linkage and a Watt-I type six-bar linkage with parallel motion.

1.
French
,
M. J.
, and
Widden
,
M. B.
, 2000, “
The Spring-and-Lever Balancing Mechanism, George Carwardin and the Anglepoise Lamp
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
0954-4062,
214
, pp.
501
508
.
2.
Bell
,
W. R.
,
Coon
,
D. C.
, and
Peterson
,
T. M.
, 2001, “
Support Arm or Surgical Light Apparatus
,” U.S. Patent No. 6,328,458.
3.
Fisher
,
K. J.
, 1992, “
Counterbalance Mechanism Positions a Light With Surgical Precision
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
,
114
(
5
), pp.
76
80
. 0025-6501
4.
Saluja
,
R.
, and
Nagare
,
A. T.
, 1991, “
Counterbalanced Arm for a Lighthead
,” U.S. Patent No. 5,025,359.
5.
Kobayashi
,
K.
, 2001, “
New Design Method for Spring Balancers
,”
ASME J. Mech. Des.
0161-8458,
123
, pp.
494
500
.
6.
Kobayashi
,
K.
, 2001, “
Comparison Between Spring Balancer and Gravity Balancer in Inertia Force and Performance
,”
ASME J. Mech. Des.
0161-8458,
123
, pp.
549
555
.
7.
Simionescu
,
I.
, and
Ciupitu
,
L.
, 2000, “
The Static Balancing of the Industrial Robot Arms Part I: Discrete Balancing
,”
Mech. Mach. Theory
0094-114X,
35
, pp.
1287
1298
.
8.
Simionescu
,
I.
, and
Ciupitu
,
L.
, 2000, “
The Static Balancing of the Industrial Robot Arms Part II: Continuous Balancing
,”
Mech. Mach. Theory
0094-114X,
35
, pp.
1299
1311
.
9.
Fattah
,
A.
,
Agrawal
,
S. K.
, and
Hamnett
,
G. C. J.
, 2006, “
Design of a Passive Gravity-Balanced Assistive Device for Sit-to-Stand Tasks
,”
ASME J. Mech. Des.
0161-8458,
128
(
5
), pp.
1122
1129
.
10.
Banala
,
S. K.
,
Agrawal
,
S. K.
,
Fattah
,
A.
,
Krishnamoorthy
,
V.
,
Hsu
,
W. L.
,
Scholz
,
J.
, and
Rudolph
,
K.
, 2006, “
Gravity-Balancing Leg Orthosis and Its Performance Evaluation
,”
IEEE Trans. Robot.
,
22
(
6
), pp.
1228
1239
. 1546-1904
11.
Agrawal
,
S. K.
, and
Fattah
,
A.
, 2004, “
Gravity-Balancing of Spatial Robotic Manipulator
,”
Mech. Mach. Theory
0094-114X,
39
(
12
), pp.
1331
1344
.
12.
Hain
,
K.
, 1961, “
Spring Mechanisms—Point Balancing, and Spring Mechanisms—Continuous Balancing
,”
Spring Design and Application
,
McGraw-Hill
,
New York
, pp.
268
275
.
13.
Nathan
,
R. H.
, 1985, “
A Constant Force Generation Mechanism
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
107
(
12
), pp.
508
512
.
14.
Streit
,
D. A.
, and
Shin
,
E.
, 1993, “
Equilibrators for Planar Linkages
,”
ASME J. Mech. Des.
0161-8458,
115
(
3
), pp.
604
611
.
15.
Rahman
,
T.
,
Ramanathan
,
R.
,
Seliktar
,
R.
, and
Harwin
,
W.
, 1995, “
A Simple Technique to Passively Gravity-Balance Articulated Mechanisms
,”
ASME J. Mech. Des.
0161-8458,
117
(
4
), pp.
655
658
.
16.
Arsenault
,
M.
, and
Gosselin
,
C. M.
, 2007, “
Static Balancing of Tensegrity Mechanisms
,”
ASME J. Mech. Des.
0161-8458,
129
(
3
), pp.
295
300
.
17.
Streit
,
D. A.
, and
Gilmore
,
B. J.
, 1989, “
‘Perfect’ Equilibrators for Rotatable Bodies
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
111
(
4
), pp.
451
458
.
18.
Wongratanaphisan
,
T.
, and
Cole
,
M. O. T.
, 2008, “
Analysis of a Gravity Compensated Four-Bar Linkage Mechanism With Linear Spring Suspension
,”
ASME J. Mech. Des.
0161-8458,
130
(
1
), p.
011006
.
19.
Shieh
,
W. B.
,
Chen
,
D. Z.
, and
Lin
,
P. Y.
, 2007, “
Design of Statically Balanced Planar Four-Bar Linkages With Base-Attached Springs
,”
12th IFToMM World Congress
, Besançon, France, Jun. 18–21.
20.
Strang
,
G.
, 1988,
Linear Algebra and Its Applications
,
3rd ed.
,
Brooks-Cole
,
Belmont, MA
, pp.
84
85
.
21.
Kutzbach
,
K.
, 1929, “
Mechanische Leitengsverzweigung, Maschinenbau
,”
Der Betrieb
,
8
(
21
), pp.
710
716
.
22.
Franke
,
R.
, 1958,
Vom Aufbau der Getriebe
, Vol.
I
,
3rd ed.
,
VDI
,
Dusseldorf, Germany
.
23.
Dijksman
,
E. A.
, 1976,
Motion Geometry of Mechanisms
,
Cambridge University Press
,
London
.
You do not currently have access to this content.