The article describes the design of a robotic wrist able to perform spherical motions: Its mechanical architecture is based on parallel kinematics and is suitable to be realized at the mini- or microscale by means of flexible joints. In view of the preliminary design, a rigid-body model has been studied first and the direct and inverse kinematic analyses have been performed, allowing for the determination of theoretical workspace and passive joints’ displacements. The rigid-body dynamic behavior and the operative ranges of the machine have been assessed through the development of an inverse dynamics model. Then, the microparts have been designed with the help of finite element method (FEM) and multibody software and the study has been focused on the flexures: Since the analyses showed that the center of the spherical motion moves around several millimeters in the workspace, the original kinematic concept has been modified with the introduction of a ball joint constraining the mobile platform to frame so as to prevent unwanted translations.

1.
Clavel
,
R.
, 1988, “
Delta, A Fast Robot With Parallel Geometry
,”
Proceedings of the 18th ISIR: International Symposium on Industrial Robots
, Lausanne, Apr. 26–28, pp.
91
100
.
2.
Tsai
,
L. W.
, and
Joshi
,
S.
, 2002, “
Kinematics Analysis of 3-DOF Position Mechanisms for Use in Hybrid Kinematic Machines
,”
ASME J. Mech. Des.
0161-8458,
124
, pp.
245
253
.
3.
Callegari
,
M.
, and
Tarantini
,
M.
, 2003, “
Kinematic Analysis of a Novel Translational Platform
,”
ASME J. Mech. Des.
0161-8458,
125
(
2
), pp.
308
315
.
4.
Liu
,
X.
,
Wang
,
J.
, and
Pritschow
,
G.
, 2005, “
A New Family of Spatial 3-DoF Fully-Parallel Manipulators With High Rotational Capability
,”
Mech. Mach. Theory
0094-114X,
40
, pp.
475
494
.
5.
Li
,
W.
,
Gao
,
F.
, and
Zhang
,
J.
, 2005, “
R-CUBE, a Decoupled Parallel Manipulator Only With Revolute Joints
,”
Mech. Mach. Theory
,
40
, pp.
467
473
.
6.
Callegari
,
M.
, and
Palpacelli
,
M. -C.
, 2008, “
Prototype Design of a Translating Parallel Robot
,”
Meccanica
,
43
(
2
), pp.
133
151
. 0025-6455
7.
Callegari
,
M.
,
Gabrielli
,
A.
, and
Ruggiu
,
M.
, 2008, “
Kineto-Elasto-Static Synthesis of a 3-CRU Spherical Wrist for Miniaturized Assembly Tasks
,”
Meccanica
,
43
(
4
), pp.
377
389
. 0025-6455
8.
Gosselin
,
C.
, and
Angeles
,
J.
, 1989, “
The Optimum Kinematic Design of a Spherical Three-Degree-of-Freedom Parallel Manipulator
,”
ASME J. Mech., Transm., Autom. Des.
,
111
(
2
), pp.
202
207
.
9.
Lee
,
J. J.
, and
Chang
,
S. -L.
, 1992, “
On the Kinematics of the UPS Wrist for Real Time Control
,”
Proceedings of the 22nd ASME Biennial Mechanisms Conference: Robotics, Spatial Mechanisms and Mechanical Systems
, Scottsdale, AZ, Sept. 13–16, pp.
305
312
.
10.
Innocenti
,
C.
, and
Parenti-Castelli
,
V.
, 1993, “
Echelon Form Solution of Direct Kinematics for the General Fully-Parallel Spherical Wrist
,”
Mech. Mach. Theory
0094-114X,
28
(
4
), pp.
553
561
.
11.
Alizade
,
R. I.
,
Tagiyev
,
N. R.
, and
Duffy
,
J.
, 1994, “
A Forward and Reverse Displacement Analysis of an In-Parallel Spherical Manipulator
,”
Mech. Mach. Theory
0094-114X,
29
(
1
), pp.
125
137
.
12.
Kong
,
X.
, and
Gosselin
,
C. M.
, 2004, “
Type Synthesis of 3-DOF Spherical Parallel Manipulators Based on Screw Theory
,”
ASME J. Mech. Des.
0161-8458,
126
(
1
), pp.
101
108
.
13.
Kong
,
X.
, and
Gosselin
,
C. M.
, 2004, “
Type Synthesis of Three-Degree-of-Freedom Spherical Parallel Manipulators
,”
Int. J. Robot. Res.
0278-3649,
23
(
3
), pp.
237
245
.
14.
Karouia
,
M.
, and
Hervé
,
J. M.
, 2006, “
Non-Overconstrained 3-dof Spherical Parallel Manipulators of Type: 3-RCC, 3-CCR, 3-CRC
,”
Robotica
,
24
(
1
), pp.
85
94
. 0263-5747
15.
Karouia
,
M.
, and
Hervè
,
J. M.
, 2002, “
A Family of Novel Orientational 3-DOF Parallel Robots
,”
Proceedings of the 14th RoManSy
, Udine, Italy, Jul. 1–4, pp.
359
368
.
16.
Fang
,
Y.
, and
Tsai
,
L. -W.
, 2004, “
Structure Synthesis of a Class of 3-DOF Rotational Parallel Manipulators
,”
IEEE Trans. Rob. Autom.
1042-296X,
20
(
1
), pp.
117
121
.
17.
Di Gregorio
,
R.
, 2001, “
Kinematics of a New Spherical Parallel Manipulator With Three Equal Legs: The 3-URC Wrist
,”
J. Rob. Syst.
0741-2223,
18
(
5
), pp.
213
219
.
18.
Di Gregorio
,
R.
, 2001, “
A New Parallel Wrist Using Only Revolute Pairs: The 3-RUU Wrist
,”
Robotica
,
19
(
3
), pp.
305
309
. 0263-5747
19.
Di Gregorio
,
R.
, 2004, “
The 3-RRS Wrist: A New, Simple and Non-Overconstrained Spherical Parallel Manipulator
,”
ASME J. Mech. Des.
0161-8458,
126
(
5
), pp.
850
855
.
20.
Lusk
,
C. P.
, and
Howell
,
L. L.
, 2008, “
Spherical Bistable Micromechanism
,”
ASME J. Mech. Des.
0161-8458,
130
(
4
), p.
045001
.
21.
Callegari
,
M.
, 2008, “
Design and Prototyping of a SPM Based on 3-CPU Kinematics
,”
Parallel Manipulators: New Developments
,
J. -H.
Ryu
, ed.,
I-Tech
,
Vienna
, pp.
171
198
.
22.
Pernette
,
E.
,
Henein
,
S.
,
Magnani
,
I.
, and
Clavel
,
R.
, 1997, “
Design of Parallel Robots in Microrobotics
,”
Robotica
,
15
, pp.
417
420
. 0263-5747
23.
Yi
,
B. -J.
,
Chung
,
G. B.
,
Na
,
H. Y.
,
Kim
,
W. K.
, and
Suh
,
I. H.
, 2003, “
Design and Experiment of a 3-DOF Parallel Micromechanism Utilizing Flexure Hinges
,”
IEEE Trans. Rob. Autom.
1042-296X,
19
(
4
), pp.
604
612
.
24.
Lusk
,
C. P.
and
Howell
,
L. L.
, 2008, “
Components, Building Blocks, and Demonstrations of Spherical Mechanisms in Microelectromechanical Systems
,”
ASME J. Mech. Des.
0161-8458,
130
(
3
), p.
034503
.
25.
Bertetto
,
A. M.
, and
Ruggiu
,
M.
, 2003, “
A Two Degree of Freedom Gripper Actuated by SMA With Flexure Hinges
,”
J. Rob. Syst.
0741-2223,
20
, pp.
649
657
.
26.
Kang
,
B. H.
,
Wen
,
J. T.
,
Dagalakis
,
N. G.
, and
Gorman
,
J.
, 2004, “
Analysis and Design of Parallel Mechanism With Flexure Joints
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, New Orleans, LA, Apr. 28–30, pp.
4097
4102
.
27.
Li
,
Y.
, and
Xu
,
Q.
, 2005, “
Design and Analysis of a New 3-DOF Compliant Parallel Positioning Platform for Nanomanipulation
,”
Proceedings of the Fifth IEEE Conference on Nanotechnology
, Nagoya, Japan, Jul. 11–15.
28.
Li
,
Y.
, and
Xu
,
Q.
, 2005, “
Kinematic Design of a Novel 3-DOF Compliant Parallel Manipulator for Nanomanipulation
,”
Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics
, Monterey, CA, pp.
93
98
.
29.
Xu
,
Q.
, and
Li
,
Y.
, 2006, “
Kinematic Analysis and Optimization of a New Compliant Parallel Micromanipulator
,”
International Journal on Advanced Robotic Systems
,
3
(
4
), pp.
351
358
. 1729-8806
30.
Paros
,
J. M.
, and
Weisbord
,
L.
, 1965, “
How to Design Flexure Hinges
,”
Mach. Des.
,
37
, pp.
151
156
.
31.
Trease
,
B. P.
,
Moon
,
Y. -M.
, and
Kota
,
S.
, 2005, “
Design of Large-Displacement Compliant Joints
,”
ASME J. Mech. Des.
0161-8458,
127
, pp.
788
798
.
32.
Callegari
,
M.
,
Cammarata
,
A.
,
Gabrielli
,
A.
, and
Sinatra
,
R.
, 2007, “
Kinematics and Dynamics of a 3-CRU Spherical Parallel Robot
,” ASME Paper No. DETC2007–35894.
33.
Khan
,
W. A.
, and
Angeles
,
J.
, 2006, “
The Kinetostatic Optimization of Robotic Manipulators: The Inverse and the Direct Problems
,”
ASME J. Mech. Des.
0161-8458,
128
(
1
), pp.
168
178
.
34.
Angeles
,
J.
, 2007,
Fundamentals of Robotic Mechanical Systems
,
3rd ed.
,
Springer
,
New York
.
35.
Angeles
,
J.
, and
Lee
,
S.
, 1988, “
The Formulation of Dynamical Equations of Holonomic Mechanical Systems Using a Natural Orthogonal Complement
,”
ASME J. Appl. Mech.
,
55
, pp.
243
244
. 0021-8936
36.
Yoshikawa
,
T.
, 1985, “
Dynamic Manipulability of Robot Manipulators
,”
J. Rob. Syst.
,
2
, pp.
113
124
. 0741-2223
37.
Yoshikawa
,
T.
, 2000, “
Erratum to ‘Dynamic Manipulability of Robot Manipulators’
,”
J. Rob. Syst.
,
17
(
8
), p.
449
. 0741-2223
This content is only available via PDF.
You do not currently have access to this content.