Modern complex engineering applications are often nondeterministic systems that include sources of uncertainty that cannot be parametrized numerically; this is unparametrizable uncertainty. One example is the uncertainty in the behavior of a mechanical system due to heterogeneous material properties on the microscale (e.g., grain boundary effects on microstructure). Another example is the uncertainty in the performance of a complex topology structure due to random topology imperfections. In this paper, we propose a method for metamodeling these nondeterministic systems for efficient uncertainty analysis in robust design. Generalized linear models for mean responses and heteroscadastic response variances are estimated iteratively in an integrated manner. Estimators that may be used for predicting mean and variance models are introduced. The usefulness of this metamodeling approach is demonstrated with the example of a linear cellular alloy heat exchanger. Applications for these heat exchangers include actively cooled supersonic aircraft skins and engine combustor liners. Linear cellular alloy heat exchangers have unparametrizable uncertainty due to randomly distributed cracks in cell walls, as well as parametrizable uncertainty due to variability in wall thickness and inlet air velocity. Nondeterministic metamodels for estimating total steady state heat transfer rates in linear cellular alloy heat exchangers are developed and the results of using these metamodels are compared with those obtained by the finite element analysis (FEA) models of the linear cellular alloys.

1.
Choi
,
H. -J.
,
Austin
,
R.
,
Allen
,
J. K.
,
McDowell
,
D. L.
,
Mistree
,
F.
, and
Benson
,
D. J.
, 2005, “
An Approach for Robust Design of Reactive Powder Metal Mixtures Based on Non-Deterministic Micro-Scale Shock Simulation
,”
J. Comput.-Aided Mater. Des.
0928-1045,
12
(
1
), pp.
57
85
.
2.
Hayes
,
A. M.
,
Wang
,
A.
,
Dempsey
,
B. M.
, and
McDowell
,
D. L.
, 2004, “
Mechanics of Linear Cellular Alloys
,”
Mech. Mater.
0167-6636,
36
(
8
), pp.
691
713
.
3.
Seepersad
,
C. C.
,
Dempsey
,
B. M.
,
Allen
,
J. K.
,
Mistree
,
F.
, and
McDowell
,
D. L.
, 2004, “
Design of Multifunctional Honeycomb Material
,”
AIAA J.
,
42
(
5
), pp.
1025
1033
. 0001-1452
4.
Choi
,
H. -J.
, and
Fernández
,
M. G.
, 2003, “
Towards Finite Element-Based Thermal Topological Design of Unit Cells for Linear Cellular Alloys
,” http://www.srl.gatech.edu/Members/hchoi/MGF.HJC.ME6124.Final.Project.Report.FINAL.pdfhttp://www.srl.gatech.edu/Members/hchoi/MGF.HJC.ME6124.Final.Project.Report.FINAL.pdf.
5.
Seepersad
,
C. C.
,
Kumar
,
R. S.
,
Allen
,
J. K.
,
Mistree
,
F.
, and
McDowell
,
D. L.
, 2004, “
Multifunctional Design of Prismatic Cellular Materials
,”
J. Comput.-Aided Mater. Des.
0928-1045,
11
(
2–3
), pp.
163
181
.
6.
Seepersad
,
C. C.
,
Allen
,
J. K.
,
McDowell
,
D. L.
, and
Mistree
,
F.
, 2005, “
Robust Design of Cellular Materials With Topological and Dimensional Imperfections
,” ASME Paper No. DETC2005/DAC-85061.
7.
McKay
,
M. D.
,
Conover
,
W. J.
, and
Beckman
,
R. J.
, 1979, “
A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code
,”
Technometrics
0040-1706,
21
, pp.
239
245
.
8.
Iman
,
R. L.
,
Helton
,
J. C.
, and
Campbell
,
J. E.
, 1981, “
An Approach to Sensitivity Analysis of Computer Models, Part I. Introduction, Input Variable Selection and Preliminary Variable Assessment
,”
J. Quality Technol.
0022-4065,
13
(
3
), pp.
174
183
.
9.
Iman
,
R. L.
,
Helton
,
J. C.
, and
Campbell
,
J. E.
, 1981, “
An Approach to Sensitivity Analysis of Computer Models, Part II. Ranking of Input Variables, Response Surface Validation, Distribution Effect and Technique Synopsis
,”
J. Quality Technol.
0022-4065,
13
(
4
), pp.
232
240
.
10.
Isukapalli
,
S. S.
,
Roy
,
A.
, and
Georgopoulos
,
P. G.
, 1998, “
Stochastic Response Surface Methods (SRSMs) for Uncertainty Propagation: Application to Environmental and Biological Systems
,”
Risk Anal.
0272-4332,
18
(
3
), pp.
351
363
.
11.
Kim
,
N. H.
,
Wang
,
H.
, and
Queipo
,
N. V.
, 2004, “
Efficient Shape Optimization Under Uncertainty Using Polynomial Chaos Expansions and Local Sensitivities
,”
ASCE Joint Specialty Conference on Probabilistic Mechanics and Structural Reliability
, Albuquerque, NM.
12.
Xiu
,
D.
, and
Karniadakis
,
G. E.
, 2003, “
A New Stochastic Approach to Transient Heat Conduction Modeling With Uncertainty
,”
Int. J. Heat Mass Transfer
0017-9310,
46
(
24
), pp.
4681
4693
.
13.
Das
,
D.
, 2005, “
A Noniterative Load Flow Algorithm for Radial Distribution Networks Using Fuzzy Set Approach and Interval Arithmetic
,”
Electric Power Components and Systems
,
33
(
1
), pp.
59
72
.
14.
Hao
,
F.
, and
Merlet
,
J. -P.
, 2005, “
Multi-Criteria Optimal Design of Parallel Manipulators Based on Interval Analysis
,”
Mech. Mach. Theory
0094-114X,
40
(
2
), pp.
157
171
.
15.
Messine
,
F.
, 2004, “
Deterministic Global Optimization Using Interval Constraint Propagation Techniques
,”
RAIRO - Operation Research
,
38
(
4
), pp.
277
293
.
16.
Dubois
,
D.
, and
Prade
,
H.
, 1978, “
Operations on Fuzzy Numbers
,”
Int. J. Syst. Sci.
,
9
, pp.
613
626
. 0020-7721
17.
Dubois
,
D.
, and
Prade
,
H.
, 1979, “
Fuzzy Real Algebra: Some Results
,”
Fuzzy Sets Syst.
0165-0114,
2
(
4
), pp.
327
348
.
18.
Allen
,
J. K.
, 1996, “
The Decision to Introduce New Technology: The Fuzzy Preliminary Selection Decision Support Problem
,”
Eng. Optimiz.
,
26
, pp.
61
77
. 0934-4373
19.
Allen
,
J. K.
,
Krishnamachari
,
R. S.
,
Masetta
,
J.
,
Pearce
,
D.
,
Rigby
,
D.
, and
Mistree
,
F.
, 1992, “
Fuzzy Compromise: An Effective Way to Solve Hierarchical Design Problems
,”
Struct. Optim.
,
4
, pp.
115
120
. 0934-4373
20.
Krishnamachari
,
R.
, 1991, “
Designing With Fuzzy Compromise Decision Support Problems
,” MS thesis, Department of Mechanical Engineering, University of Houston, Houston, TX.
21.
Swadi
,
S.
, and
Bui
,
A.
, 1991,
Application of Fuzzy Sets and Bayesian Statistics in the Design of Aircraft Tires
,
Department of Mechanical Engineering, University of Houston
,
Houston, TX
.
22.
Zimmermann
,
H. J.
, 1978, “
Fuzzy Programming and Linear Programming With Several Objective Functions
,”
Fuzzy Sets Syst.
0165-0114,
1
, pp.
45
55
.
23.
Davidian
,
M.
, and
Carroll
,
R. J.
, 1987, “
Variance Function Estimation
,”
J. Am. Stat. Assoc.
,
82
(
400
), pp.
1079
1091
. 0162-1459
24.
Vining
,
G. G.
, and
Myers
,
R. H.
, 1990, “
Combining Taguchi and Response Surface Philosophies: A Dual Response Approach
,”
J. Quality Technol.
0022-4065,
22
, pp.
38
45
.
25.
Engel
,
J.
, and
Huele
,
A. F.
, 1996, “
Generalized Linear Modeling Approach to Robust Design
,”
Technometrics
,
38
(
4
), pp.
365
373
. 0040-1706
26.
Shoemaker
,
A. C.
,
Tsui
,
K. L.
, and
Wu
,
J.
, 1991, “
Economical Experimentation Methods for Robust Design
,”
Technometrics
0040-1706,
33
(
4
), pp.
415
427
.
27.
Welch
,
W. J.
,
Yu
,
T. -K.
,
Kang
,
S. M.
, and
Sacks
,
J.
, 1990, “
Computer Experiments for Quality Control by Parameter Design
,”
J. Quality Technol.
0022-4065,
22
(
1
), pp.
15
22
.
28.
Chen
,
W.
, 1995, “
A Robust Concept Exploration Method for Configuring Complex Systems
,” Ph.D. thesis, The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA.
29.
Box
,
G. E. P.
, and
Meyer
,
R. D.
, 1986, “
Dispersion Effects From Fractional Designs
,”
Technometrics
,
28
(
1
), pp.
19
27
. 0040-1706
30.
Chan
,
L. K.
, and
T. K.
Mak
, 1995, “
A Regression Approach for Discovering Small Variation Around a Target
,”
J. R. Stat. Soc., Ser. C, Appl. Stat.
,
44
, pp.
369
377
. 0040-1706
31.
Grego
,
J. M.
, 1993, “
Generalized Linear Models and Process Variation
,”
J. Quality Technol.
0022-4065,
25
(
4
), pp.
288
295
.
32.
Nair
,
V. N.
, and
Pregibon
,
D.
, 1988, “
Analyzing Dispersion Effects From Replicated Factorial Experiments
,”
Technometrics
,
30
, pp.
247
256
. 0040-1706
33.
Aitkin
,
M.
, 1987, “
Modeling Variance Heterogeneity in Normal Regression Using GLIM
,”
Appl. Stat.
,
36
(
3
), pp.
332
339
. 0035-9254
34.
Gong
,
G.
, and
Samaniego
,
F. J.
, 1981, “
Pseudo-Maximum Likelihood Estimation: Theory and Application
,”
Ann. Stat.
,
9
, pp.
861
869
. 0090-5364
35.
Amemiya
,
T.
, 1977, “
A Note on a Heteroscedastic Model
,”
J. Econometr.
,
6
, pp.
365
370
. 0304-4076
36.
Jobson
,
J. D.
, and
Fuller
,
W. A.
, 1980, “
Least Squares Estimation When the Covariance Matrix and Parameter Vector Are Functionally Related
,”
J. Am. Stat. Assoc.
,
75
, pp.
176
181
. 0162-1459
37.
Glejser
,
H.
, 1969, “
A New Test for Heteroscedasticity
,”
J. Am. Stat. Assoc.
,
64
, pp.
316
323
. 0162-1459
38.
Theil
,
H.
, 1971,
Principles of Econometrics
,
Wiley
,
New York
.
39.
Harvey
,
A. C.
, 1976, “
Estimation Regression Models With Multiplicative Heteroscedasticity
,”
Econometrica
,
44
, pp.
461
465
. 0012-9682
40.
Neter
,
J.
,
Kutner
,
M. H.
,
Nachtsheim
,
C. J.
, and
Wasserman
,
W.
, 1996,
Applied Linear Statistical Models
,
IRWIN
,
Chicago, IL
.
41.
Carroll
,
R. J.
, and
Ruppert
,
D.
, 1988,
Transformation and Weighting in Regression
,
Chapman and Hall
,
New York
.
42.
Lin
,
Y.
,
Krishnapur
,
K.
,
Allen
,
J. K.
, and
Mistree
,
F.
, 1999, “
Robust Design: Goal Formulations and a Comparison of Metamodeling Methods
,” ASME Paper No. DETC99/DAC-8608.
You do not currently have access to this content.