A continuous protein synthesis formulation based on the design principles applied to topology optimization problems is proposed in this paper. In contrast to conventional continuous protein design methods, the power law (PL) protein design formulation proposed in this paper can handle any number of residue types to accomplish the goal of protein synthesis, and hence provides a general continuous formulation for protein synthesis. Moreover, a discrete sequence with minimum energy can be determined by the PL design method as it inherits the feature of material penalization used in designing a structural topology. Since a continuous optimization method is implemented to solve the PL design formulation, the entire design process is more efficient and robust than conventional design methods employing stochastic or enumerative search methods. The performance of the proposed PL design formulation is explored by designing simple lattice protein models, for which an exhaustive search can be carried out to identify a sequence with minimum energy. We used residue probabilities as an initial guess for the design optimization to enhance the capability and efficiency of the PL design formulation. The comparison with the exchange replica method indicates that the PL design method is millions of times more efficient than the conventional stochastic protein design method.

1.
Lesk
,
A. M.
, 2001,
Introduction to Protein Architecture
,
Oxford University Press
,
Oxford, New York
.
2.
Branden
,
C.
, and
Tooze
,
J.
, 1998,
Introduction to Protein Structure
,
Garland
,
New York
.
3.
Anfinsen
,
C.
, 1973, “
Principles That Govern the Folding of Protein Chains
,”
Science
0036-8075,
181
, pp.
223
230
.
4.
Shakhnovich
,
E. I.
, and
Gutin
,
A. M.
, 1993, “
A New Approach to the Design of Stable Proteins
,”
Protein Eng.
0269-2139,
6
, pp.
793
800
.
5.
Yue
,
K.
, and
Dill
,
K. A.
, 1992, “
Inverse Protein Folding Problem: Designing Polymer Sequences
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
89
, pp.
4163
4167
.
6.
Sanjeev
,
B. S.
,
Patra
,
S. M.
, and
Vishveshwara
,
S.
, 2001, “
Sequence Design in Lattice Models by Graph Theoretical Methods
,”
J. Chem. Phys.
0021-9606,
114
(
4
), pp.
1906
1914
.
7.
Sun
,
S.
,
Brem
,
R.
,
Chan
,
H. S.
, and
Dill
,
K. A.
, 1995, “
Designing Amino Acid Sequences to Fold With Good Hydrophobic Cores
,”
Protein Eng.
0269-2139,
8
, pp.
1205
1213
.
8.
Deutsch
,
J. M.
, and
Kurosky
,
T.
, 1996, “
New Algorithm for Protein Design
,”
Phys. Rev. Lett.
0031-9007,
76
, pp.
323
326
.
9.
Abkevich
,
V. L.
,
Gutin
,
A. M.
, and
Shakhnovich
,
E. I.
, 1996, “
Improved Design of Stable and Fast-Folding Model Proteins
,”
Folding Des.
1359-0278,
1
, pp.
221
230
.
10.
Morrissey
,
M. P.
, and
Shakhnovich
,
E. I.
, 1996, “
Design of Proteins With Selected Thermal Properties
,”
Folding Des.
1359-0278,
1
, pp.
391
405
.
11.
Irbäck
,
A.
,
Peterson
,
G.
,
Potthast
,
F.
, and
Sandelin
,
E.
, 1998, “
Monte Carlo Procedure for Protein Design
,”
Phys. Rev. E
1063-651X,
58
, pp.
R5249
5252
.
12.
Irbäck
,
A.
,
Peterson
,
G.
,
Potthast
,
F.
, and
Sandelin
,
E.
, 1999, “
Design of Sequence With Good Folding Properties in Coarse-Grained Protein Models
,”
Structure (London)
0969-2126,
7
, pp.
347
360
.
13.
Zou
,
J. M.
, and
Saven
,
J. G.
, 2000, “
Statistical Theory of Combinatorial Libraries of Folding Proteins
,”
J. Mol. Biol.
0022-2836,
296
, pp.
281
294
.
14.
Walsh
,
S. T. R.
,
Cheng
,
H.
,
Bryson
,
J. W.
,
Roder
,
H.
, and
Degrado
,
W. F.
, 1999, “
Solution Structure and Dynamics of a De Novo Designed Three-Helix Bundle Protein
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
96
, pp.
5486
5491
.
15.
Marshall
,
A.
, and
Mayo
,
S. L.
, 2001, “
Achieving Stability and Conformational Specificity in Designed Proteins Via Binary Patterning
,”
J. Mol. Biol.
0022-2836,
305
, pp.
619
631
.
16.
Jones
,
D. T.
, 1994, “
De Novo Protein Design Using Pairwise Potentials and a Genetic Algorithm
,”
Protein Sci.
,
3
, pp.
567
574
. 0961-8368
17.
Hellinga
,
H. W.
, and
Richards
,
F. M.
, 1994, “
Optimal Selection of Sequences of Proteins of Known Structure by Simulated Evolution
,”
Proc. Natl. Acad. Sci. U.S.A.
,
91
, pp.
5803
5807
. 0027-8424
18.
Saven
,
J. G.
, and
Wolynes
,
P. G.
, 1997, “
Statistical Mechanics of the Combinatorial Synthesis and Analysis of Folding Macromolecules
,”
J. Phys. Chem. B
1089-5647,
101
, pp.
8375
8389
.
19.
Singh
,
M.
, 2004, “
Special Session on Geometry of Protein Modeling
,”
248th Regional Meeting of the American Mathematical Society
, Lawrenceville, NJ, Apr. 17–19.
20.
Koh
,
S. K.
,
Ananthasuresh
,
G. K.
, and
Vishveshwara
,
S.
, 2005, “
A Deterministic Optimization Approach to Protein Sequence Design Using Continuous Models
,”
Int. J. Robot. Res.
0278-3649,
24
(
2–3
), pp.
109
130
.
21.
Koh
,
S. K.
,
Ananthasuresh
,
G. K.
, and
Croke
,
C.
, 2005, “
A Quadratic Programming Formulation for the Design of Reduced Protein Models in Continuous Sequence Space
,”
ASME J. Mech. Des.
0161-8458,
127
(
4
), pp.
728
735
.
22.
Koh
,
S. K.
,
Ananthasuresh
,
G. K.
,
Yang
,
X.
, and
Saven
,
J.
, 2005, “
Continuous Optimization Method for the Sequence Design of Protein Models Consisting of Multiple Monomer Types
,”
Nanotech 2005
, Anaheim, CA.
23.
2003,
Optimal Synthesis Methods for MEMS
,
G. K.
Ananthasuresh
, ed.,
Kluwer
,
Boston, MA
.
24.
Bendsøe
,
M. P.
, 1989, “
Optimal Shape Design as a Material Distribution Problem
,”
Struct. Optim.
0934-4373,
1
, pp.
193
202
.
25.
Bendsøe
,
M. P.
, and
Sigmund
,
O.
, 2003,
Topology Optimization: Theory, Methods, and Applications
,
Springer
,
Berlin
.
26.
Rozvany
,
G. I. N.
,
Zhou
,
M.
, and
Birker
,
T.
, 1992, “
Generalized Shape Optimization Without Homogenization
,”
Struct. Optim.
,
4
, pp.
230
232
. 0934-4373
27.
Stolpe
,
M.
, and
Svanberg
,
K.
, 2001, “
An Alternative Interpolation Scheme for Minimum Compliance Topology Optimization
,”
Struct. Multidiscip. Optim.
1615-147X,
22
, pp.
116
124
.
28.
Lau
,
K. F.
, and
Dill
,
K. A.
, 1989, “
A Lattice Statistical Mechanics Model of the Conformational and Sequence Spaces of Proteins
,”
Macromolecules
0024-9297,
22
, pp.
3986
3997
.
29.
Miyazawa
,
S.
, and
Jernigan
,
R. L.
, 1985, “
Estimation of Effective Interresidue Contact Energies From Protein Crystal Structures: Quasi-Chemical Approximation
,”
Macromolecules
0024-9297,
18
, pp.
534
552
.
30.
Li
,
H.
,
Tang
,
C.
, and
Wingreen
,
N. S.
, 1997, “
Nature of Driving Force for Protein Folding: A Result From Analyzing the Statistical Potential
,”
Phys. Rev. Lett.
0031-9007,
79
(
4
), pp.
765
768
.
31.
Sigmund
,
O.
, 2001, “
A 99 Line Topology Optimization Code Written in Matlab
,”
Struct. Multidiscip. Optim.
1615-147X,
21
, pp.
120
127
.
32.
2005, MATLAB Technical Computing Software, http://www.mathworks.comhttp://www.mathworks.com.
33.
Lo
,
C.
, and
Papalambros
,
P. Y.
, 1996, “
A Deterministic Global Design Optimization Method for Nonconvex Generalized Polynomial Problems
,”
ASME J. Mech. Des.
0161-8458,
118
, pp.
75
81
.
34.
Lo
,
C.
, and
Papalambros
,
P. Y.
, 1996, “
A Convex Cutting Plane Algorithm for Global Solution of Generalized Polynomial Optimal Design Models
,”
ASME J. Mech. Des.
0161-8458,
118
, pp.
82
88
.
35.
Li
,
H.
,
Helling
,
R.
,
Tang
,
C.
, and
Wingreen
,
N. S.
, 1996, “
Emergence of Preferred Structures in a Simple Model of Protein Folding
,”
Science
0036-8075,
273
, pp.
666
669
.
36.
Wang
,
J.
, and
Wang
,
W.
, 1999, “
A Computational Approach to Simplifying the Protein Folding Alphabet
,”
Nat. Struct. Biol.
1072-8368,
6
(
11
), pp.
1033
1038
.
37.
Yang
,
X.
, and
Saven
,
J. G.
, 2005, “
Computational Methods for Protein Design and Protein Sequence Variability: Biased Monte Carlo and Replica Exchange
,”
Chem. Phys. Lett.
,
401
, pp.
205
210
. 0009-2614
38.
Schafmeister
,
C. E.
,
LaPorte
,
S. L.
,
Miercke
,
L. J. W.
, and
Stroud
,
R. M.
, 1997, “
A Designed Four Helix Bundle Protein With Native-Like Structure
,”
Nat. Struct. Biol.
1072-8368,
4
, pp.
1039
1046
.
39.
Riddle
,
D. S.
,
Santiago
,
J. V.
,
Bray-Hall
,
S. T.
,
Doshi
,
N.
,
Grantcharova
,
V. P.
,
Yi
,
Q.
, and
Baker
,
D.
, 1997, “
Functional Rapidly Folding Proteins From Simplified Amino Acid Sequences
,”
Nat. Struct. Biol.
1072-8368,
4
, pp.
805
809
.
40.
Li
,
T.
,
Fan
,
K.
,
Wang
,
J.
, and
Wang
,
W.
, 2003, “
Reduction of Protein Sequence Complexity by Residue Grouping
,”
Protein Eng.
0269-2139,
16
(
5
), pp.
323
330
.
You do not currently have access to this content.