We present a two-step technique for learning reusable design procedures from observations of a designer in action. This technique is intended for the domain of parametric design problems in which the designer iteratively adjusts the parameters of a design so as to satisfy the design requirements. In the first step of the two-step learning process, decision tree learning is used to infer rules that predict which design parameter the designer is likely to change for any particular state of an evolving design. In the second step, decision tree learning is again used, but this time to learn explicit termination conditions for the rules learned in the first step. The termination conditions are used to predict how large of a parameter change should be made when a rule is applied. The learned rules and termination conditions can be used to automatically solve new design problems with a minimum of human intervention. Experiments with this technique suggest that it can reproduce the decision making process observed from the designer, and it is considerably more efficient than the previous technique, which was incapable of learning explicit rule termination conditions. In particular, the rule termination conditions allow the new program to automatically solve design problems with far fewer iterations than previously required.

1.
Bohm
,
M. R.
,
Stone
,
R. B.
, and
Szykman
,
S.
, 2005, “
Enhancing Virtual Product Representations for Advanced Design Repository Systems
,”
ASME J. Comput. Inf. Sci. Eng.
1530-9827,
5
(
4
), pp.
360
372
.
2.
Jin
,
B.
,
Teng
,
H.
,
Wang
,
Y.
, and
Qu
,
F.
, 2008, “
Product Design Reuse With Parts Libraries and an Engineering Semantic Web for Small- and Medium-Sized Manufacturing Enterprises
,”
Int. J. Adv. Manuf. Technol.
0268-3768
38
(
11-12
), pp.
1075
1084
.
3.
Domeshek
,
E. A.
, and
Kolodner
,
J. L.
, 1992, “
A Case-Based Design Aid for Architectural Design
,”
Artificial Intelligence in Design ’92
,
J. S.
Gero
, ed., pp.
497
516
.
4.
Goel
,
A.
,
Bhatta
,
S.
, and
Stroulia
,
E.
, 1997, “
Kritik: An Early Case-Based Design System
,”
Issues and Applications of Case-Based Reasoning in Design
,
M. L.
Maher
and
P.
Pu
, eds.,
Lawrence Erlbaum Associates
,
Mahwah, NJ
, pp.
87
132
.
5.
Sycara
,
K.
,
Chandra
,
D. N.
,
Guttal
,
R.
,
Koning
,
J.
, and
Narasimhan
,
S.
, 1992, “
CADET: A Case-Based Synthesis Tool for Engineering Design
,”
International J. of Expert Systems
,
4
(
2
), pp.
157
188
.
6.
Ishino
,
Y.
, and
Jin
,
Y.
, 2002, “
Acquiring Engineering Knowledge From Design Processes
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
16
(
2
), pp.
73
91
. 0890-0604
7.
Ishino
,
Y.
, and
Jin
,
Y.
, 2006, “
An Information Value Based Approach to Design Procedure Capture
,”
Adv. Eng. Inf.
,
20
(
1
), pp.
89
107
. 1474-0346
8.
Mittal
,
S.
,
Dym
,
C. L.
, and
Morjaria
,
M.
, 1986, “
PRIDE: An Expert System for the Design of Paper Handling Systems
,”
Computer
0018-9162,
19
(
7
), pp.
102
114
.
9.
Brown
,
D. C.
, and
Chandrasekaran
,
B.
, 1986, “
Knowledge and Control for a Mechanical Design Expert System
,”
Computer
0018-9162,
19
, pp.
92
100
.
10.
Davis
,
R.
, and
Lenat
,
D. B.
, 1982,
Knowledge-Based Systems in Artificial Intelligence
,
McGraw-Hill
,
New York
.
11.
Papalambros
,
P. Y.
, and
Wilde
,
D. J.
, 2000,
Principles of Optimal Design: Modeling and Computation
,
2nd ed.
,
Cambridge University Press
,
Cambridge
.
12.
Stahovich
,
T. F.
, 2000, “
LearnIT: An Instance-Based Approach to Learning and Reusing Design Strategies
,”
ASME J. Mech. Des.
0161-8458,
122
(
3
), pp.
249
256
.
13.
Stahovich
,
T. F.
, and
Bal
,
H.
, 2002, “
An Inductive Approach to Learning and Reusing Design Strategies
,”
Res. Eng. Des.
,
13
(
2
), pp.
109
121
. 0934-9839
14.
Quinlan
,
J. R.
, 1986, “
Induction of Decision Trees
,”
Mach. Learn.
,
1
(
1
), pp.
81
106
. 0885-6125
15.
Mitchell
,
T. M.
, 1997,
Machine Learning
,
McGraw-Hill
,
Boston, MA
, pp.
55
60
and 72–73.
16.
Myers
,
K. L.
,
Zumel
,
N. B.
, and
Garcia
,
P.
, 1999, “
Automated Capture of Rationale for the Detailed Design Process
,”
11th Conference on Innovative Applications of Artificial Intelligence
.
17.
Garcia
,
A. C.
, and
de Souza
,
C. S.
, 1997, “
Including Rhetorical Structures in Active Documents
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
11
(
2
), pp.
109
124
. 0890-0604
18.
Schmidt
,
L. C.
,
Shetty
,
H.
, and
Chase
,
S. C.
, 2000, “
A Graph Grammar Approach for Structure Synthesis of Mechanisms
,”
ASME J. Mech. Des.
0161-8458,
122
(
4
), pp.
371
376
.
19.
Jin
,
Y.
, and
Li
,
W.
, 2007, “
Design Concept Generation: A Hierarchical Coevolutionary Approach
,”
ASME J. Mech. Des.
0161-8458,
129
(
10
), pp.
1012
1022
.
20.
Mackenzie
,
C. A.
, 1989, “
Inferring Relational Design Grammars
,”
Environ. Plan. B: Plan. Des.
,
16
(
3
), pp.
253
287
. 0265-8135
21.
Schnier
,
T.
, and
Gero
,
J. S.
, 1996, “
Learning Genetic Representations as Alternative to Hand-Coded Shape Grammars
,”
Artificial Intelligence in Design '96
,
J. S.
Gero
and
F.
Sudweeks
, eds.,
Kluwer
,
Dordrecht
, pp.
39
57
.
22.
Chung
,
M. J.
,
Kwon
,
P.
, and
Pentland
,
B. T.
, 2002, “
Making Process Visible: A Grammatical Approach to Managing Design Processes
,”
ASME J. Mech. Des.
0161-8458,
124
(
3
), pp.
364
374
.
23.
Daube
,
F.
, and
Hayes-Roth
,
B.
, 1989, “
A Case-Based Mechanical Redesign System
,”
Proceedings of International Joint Conferences on Artificial Intelligence
, pp.
1402
1407
.
24.
Mostow
,
J.
,
Barley
,
M.
, and
Weinrich
,
T.
, 1989, “
Automated Reuse of Design Plans
,”
Artif. Intell. Eng.
,
4
(
4
), pp.
181
196
. 0954-1810
25.
Britt
,
D. B.
, and
Glagowski
,
T.
, 1996, “
Reconstructive Derivational Analogy: A Machine Learning Approach to Automated Redesign
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
10
, pp.
115
126
. 0890-0604
26.
Mahadevan
,
S.
,
Mitchell
,
T. M.
,
Mostow
,
J.
,
Steinberg
,
L.
, and
Tadepalli
,
P. V.
, 1993, “
An Apprentice-Based Approach to Knowledge Acquisition
,”
Artif. Intell.
,
64
, pp.
1
52
. 0004-3702
27.
Orelup
,
M. F.
,
Dixon
,
J. R.
, and
Simmons
,
M. K.
, 1987, “
DOMINIC II: More Progress Towards Domain Independent Design by Iterative Redesign
,”
Proceedings of Intelligent and Integrated Manufacturing Analysis and Synthesis, Winter Annual Meeting of ASME
, pp.
67
80
.
28.
Ashley
,
S.
, 1992, “
Engineous Explores the Design Space
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
,
114
(
2
), pp.
49
52
. 0025-6501
29.
Duffy
,
A. H. B.
, 1997, “
The “What” and “How” of Learning in Design
,”
IEEE Expert
,
12
(
3
), pp.
71
76
. 0885-9000
30.
Duffy
,
A. H. B.
,
Brown
,
D. C.
, and
Goel
,
A. K.
, 1998, “
Special Issue: Machine Learning in Design
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
12
(
2
). 0890-0604
31.
Grecu
,
D. L.
, and
Brown
,
D. C.
, 1996, “
Learning to Design Together
,”
Proceedings of AAAI-96 Symposium on Adaptation, Coevolution, and Learning in Multiagent Systems
.
32.
Ivezic
,
N.
, and
Garrett
,
J. H.
, 1998, “
Machine Learning for Simulation-Based Support of Early Collaborative Design
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
12
(
2
), pp.
123
140
. 0890-0604
33.
Jamalabad
,
V. R.
, and
Langrana
,
N. A.
, 1998, “
A Learning Shell for Iterative Design (L’SID): Concepts and Applications
,”
ASME J. Mech. Des.
0161-8458,
120
(
2
), pp.
203
209
.
34.
Quinlan
,
J. R.
, 1993,
C4.5: Programs for Machine Learning
,
Morgan Kauffman
,
San Mateo, CA
.
35.
Quinlan
,
J. R.
, 1990, “
Learning Logical Definitions From Relations
,”
Mach. Learn.
,
5
(
3
), pp.
239
266
. 0885-6125
36.
Pazzani
,
M.
, and
Kibler
,
D.
, 1992, “
The Utility of Knowledge in Inductive Learning
,”
Mach. Learn.
,
9
(
1
), pp.
57
94
. 0885-6125
37.
Cohen
,
W. W.
, 1995, “
Fast Effective Rule Induction
,”
Machine Learning: Proceedings of the 12th International Conference
, pp.
115
123
.
38.
Press
,
W. H.
,
Teukolsky
,
S. A.
,
Vetterling
,
W. T.
, and
Flannery
,
B. P.
, 2002,
Numerical Recipes in C++: The Art of Scientific Computing
,
2nd ed.
,
Cambridge University Press
,
Cambridge
.
You do not currently have access to this content.