This paper presents a novel series-elastic actuator (SEA) design that uses a spiral torsion spring to achieve drivetrain compliance in a compact and efficient mechanism. The SEA utilizes electromechanical actuation and is designed for use in the experimental biped robot KURMET for investigating dynamic maneuvers. Similar to helical torsion springs, spiral torsion springs are particularly applicable for legged robots because they preserve the rotational motion inherent in electric motors and articulated leg joints, but with less drivetrain backlash and unwanted coil interaction under load than helical torsion springs. The general spiral torsion spring design equations are presented in a form convenient for robot design, along with a detailed discussion of the mechanism surrounding the spring. Also, the SEA mechanism has a set of unidirectional hardstops that further improves the position control by allowing series-elasticity in only one rotational direction.

1.
Raibert
,
M.
, 1986,
Legged Robots That Balance
,
MIT
,
Cambridge, MA
.
2.
Pratt
,
G. A.
, and
Williamson
,
M. M.
, 1995, “
Series Elastic Actuators
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
, Vol.
1
, pp.
399
406
.
3.
Pratt
,
J.
,
Dilworth
,
P.
, and
Pratt
,
G.
, 1997, “
Virtual Model Control of a Bipedal Walking Robot
,”
IEEE International Conference on Robotics and Automation
, Albuquerque, NM, pp.
193
198
.
4.
Pratt
,
J.
,
Krupp
,
B.
, and
Morse
,
C.
, 2002, “
Series Elastic Actuators for High Fidelity Force Control
,”
Ind. Robot
0143-991X,
29
, pp.
234
241
.
5.
Pratt
,
G.
, 2002, “
Low Impedance Walking Robots
,”
Integr. Comp. Biol.
1540-7063,
42
, pp.
174
181
.
6.
Vallery
,
H.
,
Veneman
,
J.
,
van Asseldonk
,
E.
,
Ekkelenkamp
,
R.
,
Buss
,
M.
, and
van der Kooij
,
H.
, 2008, “
Compliant Actuation of Rehabilitation Robots
,”
IEEE Rob. Autom. Mag.
1070-9932,
15
, pp.
60
69
.
7.
Sensinger
,
J. W.
, and
Weir
,
R. F.
, 2006, “
Improvements to Series Elastic Actuators
,”
IEEE International Conference on Mechatronic and Embedded Systems and Applications
, Beijing, China.
8.
Conti
,
F.
, and
Khatib
,
O.
, 2009, “
A New Actuation Approach for Haptic Interface Design
,”
Int. J. Robot. Res.
0278-3649,
28
(
6
), pp.
834
848
.
9.
Playter
,
R. R.
, and
Raibert
,
M. H.
, 1992, “
Control of a Biped Somersault in 3D
,”
IEEE/RJS International Conference on Intelligent Robots and Systems
, pp.
582
589
.
10.
Niiyama
,
R.
,
Nagakubo
,
A.
, and
Kuniyoshi
,
Y.
, 2007, “
Mowgli: A Bipedal Jumping and Landing Robot With an Artificial Musculoskeletal System
,”
IEEE International Conference on Robotics and Automation
, Rome, Italy, pp.
2546
2551
.
11.
Curran
,
S.
,
Knox
,
B. T.
,
Schmiedeler
,
J. P.
, and
Orin
,
D. E.
, 2009, “
Design of Series-Elastic Actuators for Dynamic Robots With Articulated Legs
,”
ASME J. Mech. Rob.
1942-4302,
1
(
1
), p.
011006
.
12.
Mennitto
,
G.
, and
Buehler
,
M.
, 1996, “
Carl: A Compliant Articulated Robot Leg for Dynamic Locomotion
,”
Robot. Auton. Syst.
,
18
, pp.
337
344
.
13.
Migliore
,
S. A.
,
Brown
,
E. A.
, and
DeWeerth
,
S. P.
, 2007, “
Novel Nonlinear Elastic Actuators for Passively Controlling Robotic Joint Compliance
,”
ASME J. Mech. Des.
0161-8458,
129
, pp.
406
412
.
14.
Hurst
,
J. W.
, and
Rizzi
,
A. A.
, 2008, “
Series Compliance for an Efficient Running Gait
,”
IEEE Rob. Autom. Mag.
1070-9932,
15
, pp.
42
51
.
15.
Knox
,
B. T.
, 2008, “
Design of a Biped Robot Capable of Dynamic Maneuvers
,” MS thesis, Department of Mechanical Engineering, Ohio State University, Columbus, OH.
16.
Collins
,
J. A.
, 2003,
Mechanical Design of Machine Elements and Machines: A Failure Prevention Perspective
,
Wiley
,
New York
.
You do not currently have access to this content.