In a complex system it is desirable to reduce the number of expensive function evaluations required for an accurate estimation of the probability of failure. An efficient reliability estimation method is presented for engineering systems with multiple failure regions and potentially multiple most probable points. The method can handle implicit nonlinear limit state functions with correlated or noncorrelated random variables, which can be described by any probabilistic distribution. It uses a combination of approximate or “accurate-on-demand,” global and local metamodels, which serve as indicators to determine the failure and safe regions. Sample points close to limit states define transition regions between safe and failure domains. A clustering technique identifies all transition regions, which can be, in general, disjoint, and local metamodels of the actual limit states are generated for each transition region. Importance sampling generates sample points only in the identified transition and failure regions, thus, allowing the method to focus on the areas near the failure region and not expend computational effort on the sample points in the safe domain. A robust maximin “space-filling” sampling technique is used to construct the metamodels. Two numerical examples highlight the accuracy and efficiency of the method.

1.
Hasofer
,
A. M.
, and
Lind
,
N. C.
, 1974, “
An Exact and Invariant First Order Reliability Format
,”
J. Eng. Mech.
0733-9399,
100
, pp.
111
121
.
2.
Rackwitz
,
R.
, and
Fiessler
,
B.
, 1978, “
Structural Reliability Under Combined Random Load Sequences
,”
Comput. Struct.
0045-7949,
9
(
5
), pp.
484
494
.
3.
Breitung
,
K.
, 1984, “
Asymptotic Approximations for Multinormal Integrals
,”
J. Eng. Mech.
0733-9399,
110
, pp.
357
366
.
4.
Tvedt
,
L.
, 1990, “
Distribution of Quadratic Forms in Normal Space-Application to Structural Reliability
,”
J. Eng. Mech.
0733-9399,
116
(
6
), pp.
1183
1197
.
5.
Zhao
,
Y.
, and
Ono
,
T.
, 1999, “
A General Procedure for First/Second-Order Reliability Method (FORM/SORM)
,”
Struct. Safety
0167-4730,
21
(
2
), pp.
95
112
.
6.
Der Kiureghian
,
A.
, and
Dakessian
,
T.
, 1998, “
Multiple Design Points in First and Second-Order Reliability
,”
Struct. Safety
0167-4730,
20
(
1
), pp.
37
49
.
7.
Mahadevan
,
S.
, and
Shi
,
P.
, 2001, “
Multiple Linearization Method for Nonlinear Reliability Analysis
,”
J. Eng. Mech.
0733-9399,
127
(
11
), pp.
1165
1173
.
8.
Bucher
,
C. G.
, 1988, “
Adaptive Sampling—An Iterative Fast Mote Carlo Procedure
,”
Struct. Safety
0167-4730,
5
, pp.
119
126
.
9.
Melchers
,
R. E.
, 1989, “
Improved Importance Sampling Methods for Structural System Reliability Calculation
,”
Proceedings of International Conference on Structural Safety and Reliability (ICOSSAR)
, pp.
1185
1192
.
10.
Karamchandani
,
A.
,
Bjerager
,
P.
, and
Cornell
,
C. A.
, 1989, “
Adaptive Importance Sampling
,”
Fifth International Conference on Structural Safety and Reliability
,
A. H.-S.
Ang
,
M.
Shinozuka
, and
G. I.
Schuëller
, eds.,
ASCE
,
New York
, pp.
855
862
.
11.
Mahadevan
,
S.
, and
Raghothamachar
,
P.
, 2000, “
Adaptive Simulation for System Reliability Analysis of Large Structures
,”
Comput. Struct.
0045-7949,
77
, pp.
725
734
.
12.
Zou
,
T.
,
Mahadevan
,
S.
,
Mourelatos
,
Z. P.
, and
Meernik
,
P. R.
, 2002, “
Reliability Analysis of Automotive Body-Door Subsystem
,”
Reliab. Eng. Syst. Saf.
0951-8320,
78
(
3
), pp.
315
324
.
13.
Mourelatos
,
Z. P.
,
Kuczera
,
R.
, and
Latcha
,
M.
, 2006, “
An Efficient Monte Carlo Reliability Analysis Using Global and Local Metamodels
,”
11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference
, Portsmouth, VA, Sept. 6–8, Paper No. AIAA-2006-7087.
14.
Kuczera
,
R.
,
Mourelatos
,
Z. P.
, and
Latcha
,
M.
, 2007, “
A Monte Carlo Reliability Assessment for Multiple Failure Region Problems Using Approximate Metamodels
,”
ASME
Paper No. DETC2007-34957,.
15.
Zou
,
T.
,
Mourelatos
,
Z. P.
,
Mahadevan
,
S.
, and
Tu
,
J.
, 2003, “
An Indicator Response Surface Method for Simulation-Based Reliability Analysis
,”
ASME J. Mech. Des.
0161-8458,
130
(
7
), p.
071401
.
16.
Shan
,
S.
, and
Wang
,
G. G.
, 2006, “
Failure Surface Frontier for Reliability Assessment on Expensive Performance Function
,”
ASME J. Mech. Des.
0161-8458,
128
, pp.
1227
1235
.
17.
Pitchumani
,
R.
, and
Mawardi
,
A.
, 2005, “
SAMS: Stochastic Analysis With Minimal Sampling—A Fast Algorithm for Analysis and Design Under Uncertainty
,”
ASME J. Mech. Des.
0161-8458,
127
, pp.
558
571
.
18.
Tu
,
J.
, and
Jones
,
D. R.
, 2003, “
Variable Screening in Metamodel Design by Cross-Validated Moving Least Squares Method
,”
Proceedings of 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference
, Norfolk, VA, Apr. 7–10, Paper No. AIAA-2003-1669.
19.
Ye
,
K. Q.
,
Li
,
W.
, and
Sudjianto
,
A.
, 2000, “
Algorithmic Construction of Optimal Symmetric Latin Hypercube Designs
,”
J. Stat. Plan. Infer.
0378-3758,
90
, pp.
145
159
.
20.
Melchers
,
R. E.
, 1999,
Structural Reliability Analysis and Prediction
,
2nd ed.
,
Wiley
,
Chichester, UK
.
21.
Farizal
,
F.
, and
Nikolaidis
,
E.
, 2007, “
Assessment of Imprecise Reliability Using Efficient Probabilistic Reanalysis
,”
SAE World Congress
, Detroit, MI, Paper No. 2007-01-0552.
22.
Johnson
,
M. E.
,
Moore
,
L. M.
, and
Ylvisaker
,
D.
, 1990, “
Minimax and Maximin Distance Design
,”
J. Stat. Plan. Infer.
0378-3758,
26
, pp.
131
148
.
23.
Currin
,
C.
,
Mitchell
,
T.
,
Morris
,
M.
, and
Ylvisaker
,
D.
, 1991, “
Bayesian Prediction of Deterministic Functions With Applications to the Design and Analysis of Computer Experiments
,”
J. Am. Stat. Assoc.
0162-1459,
86
, pp.
953
963
.
24.
Fang
,
K. -T.
,
Li
,
R.
, and
Sudjianto
,
A.
, 2006,
Design and Modeling for Computer Experiments
,
Chapman & Hall/CRC, Taylor & Francis Group
,
Boca Raton, FL
.
25.
Johnson
,
S. C.
, 1967, “
Hierarchical Clustering Schemes
,”
Psychometrika
0033-3123,
32
, pp.
241
254
.
26.
Haldar
,
A.
, and
Mahadevan
,
S.
, 2000,
Probability, Reliability and Statistical Methods in Engineering Design
,
Wiley
,
New York
.
27.
Arora
,
J. S.
, 2004,
Introduction to Optimum Design
,
2nd ed.
,
Elsevier
,
New York
.
28.
Du
,
X.
, 2006, “
Reliability-Based Design Using Saddlepoint Approximation
,”
ASME
Paper No. DETC2006-99077.
This content is only available via PDF.
You do not currently have access to this content.