Compliant bistable mechanisms are a class of mechanical systems that benefit from both compliance, allowing easy manufacturing on a small scale, and bistability, which provides two passive and stable positions. These properties make them first-class candidates not only for microswitches but also several other robotic appliances. This paper investigates the actuation of a simple bistable mechanism, the bistable buckled beam. It is pointed out that the position of the actuation has a significant impact on the behavior of the system. A new model is proposed and discussed, with experimental validations to compare central and offset loading, highlighting the strengths of each.

1.
Jensen
,
B. D.
, and
Howell
,
L. L.
, 2004, “
Bistable Configurations of Compliant Mechanisms Modeled Using Four Links and Translation Joints
,”
ASME J. Mech. Des.
0161-8458,
126
, pp.
657
666
.
2.
Vangbo
,
M.
, and
Bäklund
,
Y.
, 1998, “
A Lateral Symmetrically Bistable Buckled Beam
,”
J. Micromech. Microeng.
0960-1317,
8
, pp.
29
32
.
3.
Hafez
,
M.
,
Lichter
,
M. D.
, and
Dubowski
,
S.
, 2003, “
Optimized Binary Modular Reconfigurable Robotic Devices
,”
IEEE/ASME Trans. Mechatron.
1083-4435,
8
(
1
), pp.
18
25
.
4.
Matoba
,
H.
,
Ishikawa
,
T.
,
Kim
,
C. -J.
, and
Muller
,
R. S.
, 1994, “
A Bistable Snapping Microactuator
,”
Proceedings of the IEEE Workshop on Micro Electro Mechanical Systems (MEMS 94)
, Oiso, Japan.
5.
Wang
,
G.
, and
Shahinpoor
,
M.
, 1997, “
Design, Prototyping and Computer Simulations of a Novel Large Bending Actuator Made With a Shape Memory Alloy Contractile Wire
,”
Smart Mater. Struct.
0964-1726,
6
, pp.
214
221
.
6.
Shahinpoor
,
M.
,
Bar-Cohen
,
Y.
,
Simpson
,
J. O.
, and
Smith
,
J.
, 1998, “
Ionic Polymermetal Composites (IPMCs) as Biomimetic Sensors, Actuators and Artificial Muscles—A Review
,”
Smart Mater. Struct.
0964-1726,
7
, pp.
R15
R30
.
7.
Cazottes
,
P.
,
Fernandes
,
A.
,
Pouget
,
J.
, and
Hafez
,
M.
, 2007, “
Optimisation de Mécanismes Bistables: Structures et Actionneurs
,”
18ème Congrès Français de Mécanique (CFM07)
, Grenoble, France.
8.
Qiu
,
J.
, 2003, “
An Electrothermally-Actuated Bistable MEMS Relay for Power Applications
,” Ph.D. thesis, Department of Mechanical Engineering, Massachusetts Institute of Technology, Boston, MA.
9.
Vangbo
,
M.
, 1998, “
An Analytical Analysis of a Compressed Bistable Buckled Beam
,”
Sens. Actuators, A
0924-4247,
69
, pp.
212
216
.
10.
Qiu
,
J.
,
Lang
,
J. H.
, and
Slocum
,
A. H.
, 2004, “
A Curved-Beam Bistable Mechanism
,”
J. Microelectromech. Syst.
1057-7157,
13
(
2
), pp.
137
146
.
11.
Timoshenko
,
S. P.
, and
Gere
,
J. M.
, 1961,
Theory of Elastic Stability
,
2nd ed.
,
McGraw-Hill
,
New York
.
12.
Jensen
,
B. D.
,
Howell
,
L. L.
, and
Salmon
,
L. G.
, 1999, “
Design of Two-Link, In-Plane, Bistable Compliant Micro-Mechanisms
,”
ASME J. Mech. Des.
0161-8458,
121
, pp.
416
419
.
13.
Schiloer
,
T.
, and
Pellegrino
,
S.
, 2004, “
Multiconfiguration Space Frames
,”
Structures, Structural Dynamics and Materials Conference
, AIAA Paper No. 2004-1529.
14.
Brenner
,
M. P.
,
Lang
,
J.
,
Li
,
J.
,
Qiu
,
J.
, and
Slocum
,
A.
, 2003, “
Optimal Design of a Bistable Switch
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
100
(
17
), pp.
9663
9667
.
You do not currently have access to this content.