This paper addresses the problem of certifying the performance of a precision flexure-based mechanism design with respect to the given constraints. Due to the stringent requirements associated with flexure-based precision mechanisms, it is necessary to be able to evaluate and certify the performance at the design stage, taking into account the possible sources of errors such as fabrication tolerances and the modeling inaccuracies in flexure joints. An interval-based method is proposed to certify whether various constraints are satisfied for all points within a required workspace. Unlike the finite-element methods that are commonly used today to evaluate a design, where material properties are used for evaluation on a point-to-point sampling basis, the proposed technique offers a wide range of versatility in the design criteria to be evaluated and the results are true for all continuous values within the certified range of the workspace. This paper takes a pedagogical approach in presenting the interval-based methodologies and the implementation on a planar 3revolute-revolute-revolute (RRR) parallel flexure-based manipulator.

1.
Paros
,
J. M.
, and
Weisbord
,
L.
, 1965, “
How to Design Flexure Hinge
,”
Mach. Des.
0024-9114,
37
(
27
), pp.
151
156
.
2.
Scire
,
F. E.
, and
Teague
,
E. C.
, 1978, “
Piezodriven 50-μm Range Stage With Subnanometer Resolution
,”
Rev. Sci. Instrum.
0034-6748,
49
(
12
), pp.
1735
1740
.
3.
Choi
,
D.
, and
Riviere
,
C.
, 2005, “
Flexure-Based Manipulator for Active Handheld Microsurgical Instrument
,”
Proceedings of the IEEE Conference on Engineering in Medicine and Biology Society
, pp.
2325
2328
.
4.
Gao
,
P.
,
Swei
,
S. -M.
, and
Yuan
,
Z.
, 1999, “
A New Piezodriven Precision Micropositioning Stage Utilizing Flexure Hinges
,”
Nanotechnology
0957-4484,
10
, pp.
394
398
.
5.
Kim
,
D.
,
Kang
,
D.
,
Shim
,
J.
,
Song
,
I.
, and
Gweon
,
D.
, 2005, “
Optimal Design of a Flexure Hinge-Based XYZ Atomic Force Microscopy Scanner for Minimizing Abbe Errors
,”
Rev. Sci. Instrum.
,
76
(
7
), pp.
073706.1
073706.7
. 0957-4484
6.
Yi
,
B. -J.
,
Chung
,
G. B.
,
Na
,
H. Y.
,
Kim
,
W. K.
, and
Suh
,
I. H.
, 2003, “
Design and Experiment of a 3-DOF Parallel Micromechanism Utilizing Flexure Hinges
,”
IEEE Trans. Rob. Autom.
1042-296X,
19
(
4
), pp.
604
612
.
7.
Merlet
,
J. -P.
,
Gosselin
,
C.
, and
Mouly
,
N.
, 1998, “
Workspaces of Planar Parallel Manipulators
,”
Mech. Mach. Theory
0094-114X,
33
(
1–2
), pp.
7
20
.
8.
Pennock
,
G.
, and
Kassner
,
D.
, 1993, “
The Workspace of a General Geometry Planar Three Degree of Freedom Platform Manipulator
,”
ASME J. Mech. Des.
0161-8458,
115
(
2
), pp.
269
276
.
9.
Kumar
,
V.
, 1992, “
Characterization of Workspaces of Parallel Manipulators
,”
ASME J. Mech. Des.
0161-8458,
114
(
3
), pp.
368
375
.
10.
Niaritsiry
,
T. -F.
,
Fazenda
,
N.
, and
Clavel
,
R.
, 2004, “
Study of the Sources of Inaccuracy of a 3 DOF Flexure Hinge-Based Parallel Manipulator
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, Vol.
4
, pp.
4091
4096
.
11.
Land
,
A.
, and
Doig
,
A.
, 1960, “
An Automatic Method of Solving Discrete Programming Problems
,”
Econometrica
0012-9682,
28
(
3
), pp.
497
520
.
12.
Moore
,
R.
, 1966,
Interval Analysis
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
13.
Hansen
,
E.
, and
Walster
,
G.
, 2004,
Global Optimization Using Interval Analysis
,
2nd ed.
,
Dekker
,
New York
.
14.
Berz
,
M.
, and
Hoffstätter
,
G.
, 1998, “
Computation and Application of Taylor Polynomials With Interval Remainder Bounds
,”
Reliable Computing
,
4
, pp.
83
97
.
15.
Benhamou
,
F.
,
Goualard
,
F.
, and
Granvilliers
,
L.
, 1999, “
Revising Hull and Box Consistency
,”
Proceedings of the. International Conference on Logic Programming
, Las Cruces, NM, pp.
230
244
.
16.
Collavizza
,
M.
,
Delobe
,
F.
, and
Rueher
,
M.
, 1999, “
Comparing Partial Consistencies
,”
Reliable Computing
,
5
, pp.
213
228
.
17.
Lhomme
,
O.
, 1993, “
Consistency Techniques for Numeric CSPs
,”
Proceedings of the IJCAI 93
, Chambery, France, Aug., pp.
232
238
.
18.
Neumaier
,
A.
, 1990,
Interval Methods for Systems of Equations
,
Cambridge University
,
Cambridge, London
.
19.
Alefeld
,
G.
, 1984, “
On the Convergence of Some Interval-Arithmetic Modifications of Newton’s Method
,”
SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.
0036-1429,
21
(
2
), pp.
363
372
.
20.
Kearfott
,
R. B.
, 1988, “
Corrigenda: Some Tests of Generalized Bisection
,”
ACM Trans. Math. Softw.
,
14
(
4
), p.
399
. 0098-3500
21.
Kearfott
,
R. B.
, and
Novoa
,
M.
, III
, 1990, “
Algorithm 681: INTBIS, a Portable Interval Newton/Bisection Package
,”
ACM Trans. Math. Softw.
0098-3500,
16
(
2
), pp.
152
157
.
22.
Lu
,
T. -F.
,
Handley
,
D. C.
,
Yong
,
Y. K.
, and
Eales
,
C.
, 2004, “
A Three-DOF Compliant Micromotion Stage With Flexure Hinges
,”
Ind. Robot
0143-991X,
31
(
4
), pp.
355
361
.
23.
Merlet
,
J. -P.
, 2000, “
ALIAS: An Interval Analysis Based Library for Solving and Analyzing System of Equations
,”
Proceedings of the SEA
, Toulouse, France, June 14–16.
24.
Bonev
,
I.
, 2002, “
Geometric Analysis of Parallel Mechanisms
,” Ph.D. thesis, Université Laval, Québec, QC, Canada.
25.
Merlet
,
J. -P.
, 2000,
Parallel Robots
,
Kluwer
,
Dordrecht
.
26.
Merlet
,
J. -P.
, and
Donelan
,
P.
, 2006, “
On the Regularity of the Inverse Jacobian of Parallel Robot
,”
Proceedings of the International Symposium of Advances in Robot Kinematics (ARK)
, Ljubljana, Slovenia, June, pp.
41
48
.
27.
Merlet
,
J. -P.
, 2004, “
Solving the Forward Kinematics of a Gough-Type Parallel Manipulator With Interval Analysis
,”
Int. J. Robot. Res.
,
23
, pp.
221
235
. 0278-3649
28.
Raghavan
,
M.
, 1991, “
The Stewart Platform of General Geometry Has 40 Configurations
,”
Proceedings of the ASME Design and Automation Conference
, Vol.
32
, pp.
397
402
.
29.
Hansen
,
E.
, 1992, “
Bounding the Solution of Interval Linear Equations
,”
SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.
0036-1429,
29
, pp.
1493
1503
.
30.
Rohn
,
J.
, 1993, “
Cheap and Tight Bounds: The Recent Result by E. Hansen Can be Made More Efficient
,”
Interval Computations
,
4
, pp.
13
21
.
31.
Neumaier
,
A.
, 1999, “
A Simple Derivation of the Hansen–Bliek–Rohn–Ning–Kearfott Enclosure for Linear Interval Equations
,”
Reliable Computing
,
5
(
2
), pp.
131
136
.
You do not currently have access to this content.