Gerotor is generated by an oval shape generating curve, which is attached to a large pitch circle rolling on an inside smaller one. For gerotor design, existing methods are able to handle arc-based generating curves with switch angle assignability. However, when dealing with nonarc-based generating curves, the current methods do not provide switch angle assignability. The switch angle is an important parameter in gerotor kinematics; it determines the angular conjugating range on the generating curve and affects the rotor profile. In this paper, we developed a deviation-function-based design method. By using this method, users can design and directly assign switch angles to both arc- and nonarc-based gerotors. Analytical formulations of both generating and gerotor profiles are derived and summarized into a detailed algorithm in design steps. Some designed gerotor examples using our method are provided for design and process illustration.

1.
Beard
,
J. E.
,
Hall
,
A. S.
, and
Soedel
,
W.
, 1991, “
Comparison of Hypotrochoidal and Epitrochoidal Gerotors
,”
ASME J. Mech. Des.
0161-8458,
113
, pp.
133
141
.
2.
Beard
,
J. E.
,
Yannietll
,
D. W.
, and
Pennock
,
G. R.
, 1992, “
The Effects of the Generating Pin Size and Placement on the Curvature and Displacement of Epitrochoidal Gerotors
,”
Mech. Mach. Theory
0094-114X,
27
(
4
), pp.
373
389
.
3.
Colbourne
,
J. R.
, 1975, “
Gear Shape and Theoretical Flow Rate in Internal Gear Pumps
,”
Trans. Can. Soc. Mech. Eng.
0315-8977,
3
(
4
), pp.
215
223
.
4.
Demenego
,
A.
,
Vecchiato
,
D.
,
Litvin
,
F. L.
,
Nervegna
,
N.
, and
Manco
,
S.
, 2002, “
Design and Simulation of Meshing of a Cycloidal Pump
,”
Mech. Mach. Theory
0094-114X,
37
, pp.
311
332
.
5.
Shung
,
J. B.
, and
Pennock
,
G. R.
, 1994, “
The Direct Contact Problem in a Trochoidal-Type Machine
,”
Mech. Mach. Theory
0094-114X,
29
(
5
), pp.
673
689
.
6.
Colbourne
,
J. R.
, 1974, “
The Geometry of Trochoid Envelopes and Their Application in Rotary Pumps
,”
Mech. Mach. Theory
0094-114X,
9
(
3-4
), pp.
421
435
.
7.
Shung
,
J. B.
, and
Pennock
,
G. R.
, 1994, “
Geometry for Trochoidal-Type Machines With Conjugate Envelopes
,”
Mech. Mach. Theory
0094-114X,
29
(
1
), pp.
25
42
.
8.
Li
,
S.
, and
Shung
,
J. B.
, 1996, “
Geometry and Pressure in a Trochoidal-Type Machine Without Apex Seal
,”
ASME J. Mech. Des.
0161-8458,
118
, pp.
209
213
.
9.
Litvin
,
F. L.
, and
Feng
,
P. -H.
, 1996, “
Computerized Design and Generation of Cycloidal Gearings
,”
Mech. Mach. Theory
0094-114X,
31
(
7
), pp.
891
911
.
10.
Mimmi
,
G. C.
, and
Pennacchi
,
P. E.
, 2000, “
Non-Undercutting Conditions in Internal Gears
,”
Mech. Mach. Theory
0094-114X,
35
, pp.
477
490
.
11.
Vecchiato
,
D.
,
Demenego
,
A.
,
Argyris
,
J.
, and
Litvin
,
F. L.
, 2001, “
Gerotmetry of a Cycloidal Pump
,”
Comput. Methods Appl. Mech. Eng.
,
190
, pp.
2309
2330
. 0045-7825
12.
Yang
,
D. C. H.
,
Tong
,
S. H.
, and
Lin
,
J.
, 1999, “
Deviation-Function Based Pitch Curve Modification for Conjugate Pair Design
,”
ASME J. Mech. Des.
0161-8458,
121
(
4
), pp.
579
586
.
13.
Litvin
,
F. L.
, 1994,
Gear Geometry and Applied Theory
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
14.
Tong
,
S. -H.
, 1998, “
New Conjugate Pair Design–Theory and Application
,” Ph.D. thesis, University of California, Los Angeles.
15.
Pennock
,
G. R.
, and
Beard
,
J. E.
, 1997, “
Force Analysis of the Apex Seals in the Wankel Rotary Compressor Including the Influence of Fluctuations in the Crankshaft Speed
,”
Mech. Mach. Theory
0094-114X,
32
(
3
), pp.
349
361
.
You do not currently have access to this content.