In this paper, we present a methodology that helps select the distribution parameters in degrading multiresponse systems to improve dependability at the lowest lifetime cost. The dependability measures include both quality (soft failures) and reliability (hard failures). Associated costs of scrap, rework, and warrantee work are included. The key to the approach is the fast and efficient creation of the system cumulative distribution function through a series of time-variant limit-state functions. Probabilities are evaluated by Monte Carlo simulation although the first-order reliability method is a viable alternative. The cost objective function that is common in reliability-based design optimization is expanded to include a lifetime loss of performance cost, herein based on present worth theory (also called present value theory). An optimum design in terms of distribution parameters of the design variables is found via a methodology that involves minimizing cost under performance policy constraints over the lifetime as the system degrades. A case study of an over-run clutch provides the insights and potential of the proposed methodology.

1.
Savage
,
G. J.
,
Tong
,
D.
, and
Carr
,
S. M.
, 2006, “
Optimal Mean and Tolerance Allocation Using Conformance-Based Design
,”
Qual. Reliab. Eng. Int.
,
22
(
4
), pp.
445
472
. 0748-8017
2.
Savage
,
G. J.
, and
Carr
,
S. M.
, 2002, “
Interrelating Quality and Reliability in Engineering Systems
,”
Qual. Eng.
,
14
(
1
), pp.
137
152
. 0898-2112
3.
Lu
,
S.
,
Lu
,
H.
, and
Kolarik
,
W.
, 2001, “
Multivariate Performance Reliability Prediction in Real Time
,”
Reliab. Eng. Syst. Saf.
,
72
(
1
), pp.
39
45
. 0951-8320
4.
Brunelle
,
R.
, and
Kapur
,
K. C.
, 1998, “
Issues in Modeling System Reliability From Customer’s Perspective
,”
IEEE International Conference on Systems, Man, and Cybernetics
,
IEEE
,
Piscataway, NJ
, Vol.
5
, pp.
4693
4698
.
5.
Styblinski
,
M. A.
, 1991, “
Formulation of the Drift Reliability Optimization Problem
,”
Microelectron. Reliab.
,
31
(
1
), pp.
159
171
. 0026-2714
6.
Styblinski
,
M. A.
, and
Huang
,
M.
, 1993, “
Drift Reliability Optimization in IC Design: Generalized Formulation and Practical Examples
,”
IEEE Trans. Comput.-Aided Des.
0278-0070,
12
(
8
), pp.
1242
1252
.
7.
Van den Bogaard
,
J. A.
,
Shreeram
,
J.
, and
Brombacher
,
A. C.
, 2003, “
A Method for Reliability Optimization Through Degradation Analysis and Robust Design
,”
IEEE Proceedings Annual Reliability and Maintainability Symposium
,
IEEE
,
Piscataway, NJ
, pp.
55
62
.
8.
Stolkarts
,
V.
, and
Samaan
,
N.
, 2003, “
A Technique for Characterization of Hardware System Behavior for Product Reliability Predictions
,”
IEEE Proceedings Annual Reliability and Maintainability Symposium
,
IEEE
,
Piscataway, NJ
, pp.
500
506
.
9.
Huang
,
W.
, and
Askin
,
R. G.
, 2004, “
A Generalized SSI Reliability Model Considering Stochastic Loading and Strength Aging Degradation
,”
IEEE Trans. Reliab.
,
53
(
1
), pp.
77
82
. 0018-9529
10.
Andrieu-Renaud
,
C.
,
Sudret
,
B.
, and
Lemaire
,
M.
, 2004, “
The PHI2 Method: A Way to Compute Time-Variant Reliability
,”
Reliab. Eng. Syst. Saf.
,
84
(
1
), pp.
75
86
. 0951-8320
11.
Rackwitz
,
R.
, 1998, “
Computational Techniques in Stationary and Non-Stationary Load Combination: A Review and Some Extensions
,”
J. Struct. Eng.
,
25
(
1
), pp.
1
20
. 0733-9445
12.
Liao
,
H. T.
, and
Elsayed
,
E. A.
, 2005, “
Optimization of System Reliability Robustness Using Accelerated Degrading Testing
,”
IEEE Proceedings Annual Reliability and Maintainability Symposium
,
IEEE
,
Piscataway, NJ
, pp.
48
54
.
13.
Son
,
Y. K.
, and
Savage
,
G. J.
, 2007, “
Set Theoretic Formulation of Performance Reliability of Multiple Response Time-Variant Systems Due to Degradations in System Components
,”
Qual. Reliab. Eng. Int.
,
23
(
2
), pp.
171
188
. 0748-8017
14.
Royset
,
J. O.
,
Der Kiureghian
,
A.
, and
Polak
,
E.
, 2006, “
Optimal Design With Probabilistic Objectives and Constraints
,”
J. Eng. Mech.
0733-9399,
132
(
1
), pp.
107
118
.
15.
Teran
,
A.
,
Pratt
,
D. B.
, and
Case
,
K. E.
, 1996, “
Present Worth of External Quality Losses for Symmetric Nominal-is-Better Quality Characteristics
,”
Eng. Econ.
,
42
, pp.
39
52
. 0013-791X
16.
Chou
,
C. Y.
, and
Chang
,
C. L.
, 2000, “
Bivariate Tolerance Design for Lock Wheels by Considering Quality Loss
,”
Qual. Reliab. Eng. Int.
,
16
, pp.
129
138
. 0748-8017
17.
Chou
,
C. Y.
, and
Chen
,
C. H.
, 2001, “
On the Present Worth of Multivariate Quality Loss
,”
Int. J. Prod. Econ.
,
70
, pp.
279
288
. 0925-5273
18.
Son
,
Y. K.
,
Chang
,
S. W.
, and
Savage
,
G. J.
, 2007, “
Economic-Based Design of Engineering Systems With Degrading Components Using Probabilistic Loss of Quality
,”
J. Mechanical Science and Technology
,
21
(
2
), pp.
225
234
.
19.
Chiralaksanakul
,
A.
, and
Mahadevan
,
S.
, 2005, “
First-Order Approximation Methods in Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
0161-8458,
127
, pp.
851
857
.
20.
Zou
,
T.
, and
Mahadevan
,
S.
, 2006, “
Versatile Formulations for Multiobjective Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
0161-8458,
128
, pp.
1217
1226
.
21.
Jones
,
J. A.
, 1999, “
A Toolkit for Parametric Drift Modeling of Electronic Components
,”
Reliab. Eng. Syst. Saf.
,
63
(
1
), pp.
99
106
. 0951-8320
22.
Rosenblatt
,
M.
, 1952, “
Remarks on a Multivariate Transformation
,”
Ann. Math. Stat.
0003-4851,
23
, pp.
470
472
.
23.
Youn
,
B. D.
, and
Choi
,
K. K.
, 2004, “
An Investigation of Nonlinearity of Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
0161-8458,
126
, pp.
403
411
.
24.
Kapur
,
K. C.
, and
Lamberson
,
L. R.
, 1997,
Reliability in Engineering Design
,
Wiley
,
New York
, pp.
110
112
.
25.
Faber
,
M. H.
, 1995, “
Risk Based Structural Maintenance Planning
,”
Probabilistic Methods for Structural Design, Solid Mechanics and Its Applications
,
S. C.
Guedes
, ed.,
Kluwer Academic
,
Dordrecht
, pp.
377
402
.
26.
Aktas
,
E.
,
Moses
,
F.
, and
Ghosn
,
M.
, 2001, “
Cost and Safety Optimization of Structural Design Specifications
,”
Reliab. Eng. Syst. Saf.
0951-8320,
73
, pp.
205
212
.
27.
Val
,
D. V.
, 2005, “
Effect of Different Limit States on Life-Cycle Cost of RC Structures in Corrosive Environment
,”
J. Infrastruct. Syst.
1076-0342,
11
, pp.
231
241
.
28.
Ryu
,
D. S.
, and
Chang
,
S. W.
, 2005, “
Novel Concepts for Reliability Technology
,”
Microelectron. Reliab.
,
45
, pp.
611
622
. 0026-2714
29.
Seshadri
,
R.
, and
Savage
,
G. J.
, 2002, “
Integrated Robust Design With Probability of Conformance Metric
,”
Int. J. Mater. Prod. Technol.
0268-1900,
17
(
5/6
), pp.
319
337
.
30.
Choi
,
H. R.
,
Park
,
M.
, and
Salisbury
,
E.
, 2000, “
Optimal Tolerance Allocation With Loss Functions
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
122
, pp.
529
535
.
31.
Xue
,
W.
, and
Pyle
,
R.
, 2004, “
Optimal Design of Roller One Way Clutch for Starter Drives
,” SAE Paper No. 2004-01-1151.
32.
Chesney
,
D. R.
, and
Kremer
,
J. M.
, 1997, “
Generalized Equations for Roller One-Way Clutch Analysis and Design
,” SAE Paper No. 2004-01–1151, pp.
27
37
.
33.
Meeker
,
W. Q.
, and
Escobar
,
L. A.
, 1998,
Statistical Methods for Reliability Data
,
Wiley
,
New York
, Chap. 7.
34.
Misra
,
K. B.
, 2008,
Handbook of Performability Engineering
,
Springer
,
New York
.
You do not currently have access to this content.