A point-line is the combination of a directed line and an endpoint on the line. A pair of point-line positions corresponds to a point-line displacement, which is known to be associated with a set of rigid body displacements whose screw axes are distributed on a cylindroid. Different associated rigid body displacements generally correspond to different distances under Riemannian metrics on the manifold of SE(3). A unique measure of distance between a pair of point-line positions is desirable in engineering applications. In this paper, the distance between two point-line positions is investigated based on the left-invariant Riemannian metrics on the manifold of SE(3). The displacements are elaborated from the perspective of the soma space. The set of rigid body displacements associated with the point-line displacement is mapped to a one-dimensional great circle on the unit sphere in the space of four dual dimensions, on which the point with the minimum distance to the identity is indicated. It is shown that the minimum distance is achieved when an associated rigid body displacement has no rotational component about the point-line axis. The minimum distance, which has the inherited property of independence of inertial reference frames, is referred to as the point-line distance. A numerical example shows the application of point-line distance to a point-line path generation problem in mechanism synthesis.

1.
Park
,
F. C.
, 1995, “
Distance Metrics on the Rigid Body Motions With Applications to Mechanism Design
,”
ASME J. Mech. Des.
1050-0472,
117
(
1
), pp.
48
54
.
2.
Tsai
,
L. W.
, and
Roth
,
B.
, 1973, “
Incompletely Specified Displacements: Geometry and Spatial Linkage Synthesis
,”
ASME J. Eng. Ind.
0022-0817,
95
(
3
), pp.
725
736
.
3.
Bottema
,
O.
, 1973, “
On a Set of Displacements in Space
,”
ASME J. Eng. Ind.
0022-0817,
95
(
2
), pp.
451
454
.
4.
Ball
,
R. S.
, 1900,
A Treatise on the Theory of Screws
,
Cambridge University Press
,
Cambridge, UK
, p.
544
.
5.
Phillips
,
J.
, and
Hunt
,
K. H.
, 1964, “
On the Theorem of Three Axes in the Spatial Motion of Three Bodies
,”
Aust. J. Appl. Sci.
,
15
, pp.
267
287
.
6.
Sticher
,
F.
, 1989, “
On the Finite Screw Axis Cylindroid
,”
Mech. Mach. Theory
0094-114X,
24
(
3
), pp.
143
155
.
7.
Parkin
,
I. A.
, 1992, “
A Third Conformation With the Screw Systems: Finite Twist Displacements of a Directed Line and Point
,”
Mech. Mach. Theory
0094-114X,
27
(
2
), pp.
177
188
.
8.
Huang
,
C.
, and
Roth
,
B.
, 1994, “
Analytic Expressions for the Finite Screw Systems
,”
Mech. Mach. Theory
0094-114X,
29
(
2
), pp.
207
222
.
9.
Hunt
,
K. H.
, and
Parkin
,
I. A.
, 1995, “
Finite Displacements of Points, Planes, and Lines Via Screw Theory
,”
Mech. Mach. Theory
0094-114X,
30
(
2
), pp.
177
192
.
10.
Zhang
,
Y.
, and
Ting
,
K. L.
, 2004, “
On the Basis Screws and Screw Systems of Point-Line and Line Displacements
,”
ASME J. Mech. Des.
1050-0472,
126
(
1
), pp.
56
62
.
11.
Schafer
,
R. D.
, 1996,
An Introduction to Nonassociative Algebras
,
Dover
,
New York
, p.
176
.
12.
Selig
,
J. M.
, 1996,
Geometrical Methods in Robotics
,
Springer-Verlag
,
New York
, p.
269
.
13.
Zefran
,
M.
,
Kumar
,
V.
, and
Croke
,
C.
, 1996, “
Choice of Riemannian Metrics for Rigid Body Kinematics
,”
Proceedings of ASME DETC 1996
,
Irvine
,
CA
, Aug. 18–22, Paper No. MECH-1148.
14.
Park
,
F. C.
, and
Brockett
,
R. W.
, 1994, “
Kinematic Dexterity of Robotic Mechanisms
,”
Int. J. Robot. Res.
0278-3649,
13
(
1
), pp.
1
15
.
15.
Ting
,
K. L.
, and
Zhang
,
Y.
, 2004, “
Rigid Body Motion Characteristics and Unified Instantaneous Motion Representation of Points, Lines, and Planes
,”
ASME J. Mech. Des.
1050-0472,
126
(
4
), pp.
593
601
.
16.
Yang
,
A. T.
, 1963, “
Application of Quaternion Algebra and Dual Numbers to the Analysis of Spatial Mechanisms
,” Ph.D. dissertation, Columbia University, New York, NY.
17.
Bottema
,
O.
, and
Roth
,
B.
, 1979,
Theoretical Kinematics
,
North-Holland
,
New York
, p.
558
.
18.
Study
,
E.
, 1903,
Die Geometrie der Dynamen
,
Teubner
,
Leipzig
, p.
437
.
19.
Ravani
,
B.
, and
Roth
,
B.
, 1984, “
Mapping of Spatial Kinematics
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
106
(
3
), pp.
341
347
.
20.
McCarthy
,
J. M.
, 1990,
Introduction to Theoretical Kinematics
,
MIT
,
Cambridge, MA
, p.
160
.
21.
Ge
,
Q. J.
, and
Ravani
,
B.
, 1994, “
Geometric Construction of Bezier Motions
,”
ASME J. Mech. Des.
1050-0472,
116
(
3
), pp.
749
755
.
22.
Gallot
,
S.
,
Hulin
,
D.
, and
Lafontaine
,
J.
, 2004,
Riemannian Geometry
,
Springer-Verlag
,
Berlin
.
23.
Roth
,
B.
, 1967, “
On the Screw Axes and Other Special Lines Associated With Spatial Displacements of a Rigid Body
,”
ASME J. Eng. Ind.
0022-0817,
89
(
1
), pp.
102
110
.
24.
Selig
,
J. M.
, 2000, “
Clifford Algebra of Points, Lines and Planes
,”
Robotica
0263-5747,
18
, pp.
545
556
.
25.
Press
,
W. H.
,
Teukolsky
,
S. A.
,
Vetterling
,
W. T.
, and
Flannery
,
B. P.
, 1992,
Numerical Recipes in C—The Art of Scientific Computing
,
2nd ed.
,
Cambridge University Press
,
Cambridge
.
26.
Ge
,
Q. J.
, and
Ravani
,
B.
, 1998, “
Geometric Design of Rational Bezier Line Congruences and Ruled Surfaces Using Line Geometry
,” Computing Supplement 13: Geometric Modeling, pp.
101
120
.
You do not currently have access to this content.