Tolerance allocation is the process of determining allowable dimensional variations in products (parts and subassemblies) and processes (fixtures and tools) in order to meet final assembly quality and cost targets. Traditionally, tolerance allocation is conducted by solving a single optimization problem. This “all-in-one” (AIO) approach may not be desirable or applicable for various reasons: the assembler of the final product may not have access to models and∕or data to compute appropriate tolerance values for all subassemblies and parts in the case of outsourcing; optimization algorithms may face numerical difficulties when solving very large-scale, simulation-based nonlinear problems; interactions are often obscured in AIO models and trade-offs may not be quantifiable readily. This paper models multistation compliant assembly as a hierarchical multilevel process and proposes the application of analytical target cascading for formulating and solving the tolerance allocation problem. Final product quality and cost targets are translated into tolerance specifications for incoming parts, subassemblies, and station fixtures. The proposed methodology is demonstrated using a vehicle side frame assembly example. Both quality- and cost-driven tolerance allocation problems are formulated. A parametric study with respect to budget is conducted to quantify the cost-quality trade-off. We believe that the proposed multilevel optimization methodology constitutes a valuable new paradigm for tolerance design in multistation assembly involving a large number of parts and stations, and creates research opportunities in this area.

1.
Spotts
,
M. F.
, 1973, “
Allocation of Tolerances to Minimize Cost of Assembly
,”
ASME J. Eng. Ind.
0022-0817,
95
(
3
), pp.
762
764
.
2.
Lee
,
W. J.
, and
Woo
,
T. C.
, 1989, “
Optimum Selection of Discrete Tolerance
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
111
, pp.
243
252
.
3.
Chase
,
K. W.
,
Greenwood
,
W. H.
,
Loosli
,
B. G.
, and
Hauglund
,
L. F.
, 1990, “
Least Cost Tolerance Allocation for Mechanical Assemblies With Automated Process Selection
,”
Manuf. Rev.
0896-1611,
3
(
1
), pp.
49
59
.
4.
Zhang
,
C.
, and
Wang
,
H. P.
, 1993, “
The Discrete Tolerance Optimization Problem
,”
Manuf. Rev.
0896-1611,
6
, pp.
60
71
.
5.
Chase
,
K. W.
, 1999, “
Tolerance Allocation Methods for Designers
,”
Department of Mechanical Engineering, Brigham Young University
, ADCATS Report.
6.
Choi
,
H. R.
,
Park
,
M.
, and
Salisbury
,
E.
, 2000, “
Optimal Tolerance Allocation With Loss Functions
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
122
(
3
), pp.
529
535
.
7.
Hong
,
Y. S.
, and
Chang
,
T. C.
, 2002, “
A Comprehensive Review of Tolerancing Research
,”
Int. J. Prod. Res.
0020-7543,
40
(
11
), pp.
2425
2459
.
8.
Zhang
,
H.
, 1997,
Advanced Tolerancing Techniques
,
Wiley-Interscience
,
New York
.
9.
Ding
,
Y.
,
Jin
,
J.
,
Ceglarek
,
D.
, and
Shi
,
J.
, 2000, “
Process-Oriented Tolerance Synthesis for Multi-station Manufacturing Systems
,” in
Proceedings of the ASME International Mechanical Engineering Congress and Exposition
,
Orlando, FL
, Nov. 5–10, Vol. MED-Vol.
11
, pp.
15
22
.
10.
Ding
,
Y.
, 2001, “
Modeling and Analysis of Stream of Variation in Multistage Manufacturing Processes
,” Ph.D. thesis, University of Michigan, Ann Arbor.
11.
Ding
,
Y.
,
Jin
,
J.
,
Ceglarek
,
D.
, and
Shi
,
J.
, 2005, “
Process-Oriented Tolerancing for Multi-station Assembly Systems
,”
IIE Trans.
0740-817X,
37
(
6
), pp.
493
508
.
12.
Takezawa
,
N.
, 1980, “
An Improved Method for Establishing the Process-Wise Quality Standard
,”
Reports of Statistical Application Research, Union of Japanese Scientists, and Engineers
,
27
(
3
), pp.
63
76
.
13.
Liu
,
S. C.
,
Hu
,
S. J.
, and
Woo
,
T. C.
, 1996, “
Tolerance Analysis for Sheet Metal Assemblies
,”
ASME J. Mech. Des.
1050-0472,
118
, pp.
62
67
.
14.
Merkley
,
K. G.
, 1998, “
Tolerance Analysis of Compliant Assemblies
,” Ph.D. thesis, Department of Mechanical Engineering, Brigham Young University, Provo.
15.
Sellem
,
E.
, and
Riviere
,
A.
, 1998, “
Tolerance Analysis of Deformable Assemblies
,” in
Proceedings of the ASME Design Engineering Technical Conferences
,
Atlanta, GA
, Sept. 13–16, Paper No. DETC98-DAC571.
16.
Bihlmaier
,
B. F.
, 1999, “
Tolerance Analysis of Flexible Assemblies Using Finite Element and Spectral Analysis
,” Master’s thesis, Department of Mechanical Engineering, Brigham Young University, Provo.
17.
Shiu
,
B. W.
,
Ceglarek
,
D.
, and
Shi
,
J.
, 1997, “
Flexible Beam-Based Modeling of Sheet Metal Assembly for Dimensional Control
,”
Trans. NAMRI/SME
1047-3025,
24
, pp.
49
54
.
18.
Shiu
,
B. W.
,
Apley
,
D. W.
,
Ceglarek
,
D.
, and
Shi
,
J.
, 2003, “
Tolerance Allocation for Compliant Beam Structure Assemblies
,”
IIE Trans.
0740-817X,
35
(
4
), pp.
329
342
.
19.
Liu
,
S. C.
, and
Hu
,
S. J.
, 1997, “
Variation Simulation for Deformable Sheet Metal Assemblies Using Finite Element Methods
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
119
, pp.
368
374
.
20.
Jin
,
J.
, and
Shi
,
J.
, 1999, “
State Space Modeling of Sheet Metal Assembly for Dimensional Control
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
121
(
4
), pp.
756
762
.
21.
Camelio
,
J.
,
Hu
,
S. J.
, and
Ceglarek
,
D.
, 2003, “
Modeling Variation Propagation of Multi-Station Assembly Systems With Compliant Parts
,”
ASME J. Mech. Des.
1050-0472,
125
(
4
), pp.
673
681
.
22.
Hu
,
S. J.
,
Camelio
,
J.
, and
Long
,
Y.
, 2000, “
Variation Analysis for Compliant Assembly
,”
Proceedings of ASME Manufacturing Engineering Division
, Vol. MED
11
, pp.
31
37
.
23.
Camelio
,
J.
,
Hu
,
S. J.
, and
Marin
,
S. P.
, 2004, “
Compliant Assembly Variation Analysis Based on Geometric Covariance
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
126
(
2
), pp.
355
360
.
24.
Hu
,
S. J.
, and
Wu
,
S. M.
, 1992, “
Identifying Sources of Variation in Automobile Body Assembly Using Principal Component Analysis
,”
Trans. NAMRI/SME
1047-3025, pp.
311
316
.
25.
Kalpakjian
,
S.
, 1997,
Manufacturing Processes for Engineering Materials
,
3rd ed.
,
Addison-Wesley Longman, Inc.
,
Menlo Park, CA
.
26.
Speckhart
,
F. H.
, 1972, “
Calculation of Tolerance Based on a Minimum Cost Approach
,”
ASME J. Eng. Ind.
0022-0817,
94
, pp.
447
453
.
27.
Wu
,
Z.
,
Elmaraghy
,
W. H.
, and
Elmaraghy
,
H. A.
, 1988, “
Evaluation of Cost-Tolerance Algorithms for Design Tolerance Analysis and Synthesis
,”
Manuf. Rev.
0896-1611,
1
(
3
), pp.
168
179
.
28.
Wilde
,
D.
, and
Prentice
,
E.
, 1975, “
Minimum Exponential Cost Allocation of Sure-Fit Tolerances
,”
ASME J. Eng. Ind.
0022-0817,
97
, pp.
1395
1398
.
29.
Sutherland
,
G. H.
, and
Roth
,
B.
, 1975, “
Mechanism Design: Accounting for Manufacturing Tolerance and Costs in Function Generating Problems
,”
ASME J. Eng. Ind.
0022-0817,
97
, pp.
283
286
.
30.
Ostwald
,
P. F.
, and
Huang
,
J.
, 1977, “
A Method for Optimal Tolerance Selection
,”
ASME J. Eng. Ind.
0022-0817,
99
, pp.
558
565
.
31.
Kim
,
H. M.
,
Michelena
,
N. F.
,
Papalambros
,
P. Y.
, and
Jiang
,
T.
, 2003, “
Target Cascading in Optimal System Design
,”
ASME J. Mech. Des.
1050-0472,
125
(
3
), pp.
474
480
.
32.
Kim
,
H. M.
,
Kokkolaras
,
M.
,
Louca
,
L.
,
Delagrammatikas
,
G.
,
Michelena
,
N.
,
Filipi
,
Z.
,
Papalambros
,
P.
, and
Assanis
,
D.
, 2002, “
Target Cascading in Vehicle Redesign: A Class VI Truck Study
,”
Int. J. Veh. Des.
0143-3369,
29
(
3
), pp.
199
225
.
33.
Kokkolaras
,
M.
,
Fellini
,
R.
,
Kim
,
H. M.
,
Michelena
,
N.
, and
Papalambros
,
P. Y.
, 2002, “
Extension of the Target Cascading Formulation to the Design of Product Families
,”
Struct. Multidiscip. Optim.
1615-147X,
24
(
4
), pp.
293
301
.
34.
Kim
,
H. M.
,
Rideout
,
D. G.
,
Papalambros
,
P. Y.
, and
Stein
,
J. L.
, 2003, “
Analytical Target Cascading in Automotive Vehicle Design
,”
ASME J. Mech. Des.
1050-0472,
125
, pp.
481
489
.
35.
Choudhary
,
R.
,
Malkawi
,
A.
, and
Papalambros
,
P. Y.
, 2005, “
Analytic Target Cascading in Simulation-Based Building Design
,”
Autom. Constr.
0926-5805,
14
(
4
), pp.
551
568
.
36.
Michalek
,
J. J.
,
Feinberg
,
F. M.
, and
Papalambros
,
P. Y.
, 2005, “
Linking Marketing and Engineering Product Design Decisions via Analytical Target Cascading
,”
Journal of Product Innovation Management
,
22
, pp.
42
62
.
37.
Michelena
,
N.
,
Park
,
H.
, and
Papalambros
,
P. Y.
, 2003, “
Convergence Properties of Analytical Target Cascading
,”
AIAA J.
0001-1452,
41
(
5
), pp.
897
905
.
You do not currently have access to this content.