An accurate and efficient Monte Carlo simulation method is presented for limit-state-based reliability analysis at both component and system levels, using a response surface approximation of the failure indicator function. The cross-validated moving least squares method is used to construct the response surface of the indicator function, based on an optimum symmetric Latin hypercube sampling technique. The proposed method can handle problems with complicated limit state(s). Also, it can easily handle implicit, highly nonlinear limit-state functions, with variables of any statistical distributions and correlations. The method appears to be particularly efficient for multiple limit state and multiple design point problems. Three structural reliability examples are used to highlight its superior accuracy and efficiency over traditional reliability methods.

1.
Lancaster
,
P.
, and
Salkauskas
,
K.
, 1986,
Curve and Surface Fitting: An Introduction
,
Academic
,
New York
.
2.
Tu
,
J.
, and
Jones
,
D. R.
, 2003, “
Variable Screening in Metamodel Design by Cross-Validated Moving Least Squares Method
,”
Proceedings of the 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference
,
Norfolk, VA
, Apr. 7–10, Paper No. AIAA-2003-1669.
3.
Tu
,
J.
, 2003, “
Cross-Validated Multivariate Metamodeling Methods for Physics-Based Computer Simulations
,”
Proceedings of IMAC-XXI: A Conference and Exposition on Structural Dynamics
,
Kissimmee, FL
, Feb. 3–6.
4.
Ye
,
K. Q.
,
Li
,
W.
, and
Sudjianto
,
A.
, 2000, “
Algorithmic Construction of Optimal Symmetric Latin Hypercube Designs
,”
J. Stat. Plan. Infer.
0378-3758,
90
, pp.
145
159
.
5.
Shewry
,
M.
, and
Wynn
,
H.
, 1987, “
Maximum Entropy Sampling
,”
Journal of Applied Statistics
,
14
(
2
), pp.
165
170
.
6.
Sacks
,
J.
,
Schiller
,
S. B.
, and
Welch
,
W. J.
, 1989, “
Designs for Computer Experiments
,”
Technometrics
0040-1706,
34
, pp.
15
25
.
7.
Fang
,
K.-T.
,
Li
,
R.
, and
Sudjianto
,
A.
, 2006,
Design and Modeling for Computer Experiments
,
Chapman and Hall
,
London
.
8.
Hasofer
,
A. M.
, and
Lind
,
N. C.
, 1974, “
An Exact and Invariant First Order Reliability Format
,”
J. Engrg. Mech. Div.
0044-7951,
100
(EM1), pp.
111
121
.
9.
Rackwitz
,
R.
, and
Fiessler
,
B.
, 1978, “
Structural Reliability Under Combined Random Load Sequences
,”
Comput. Struct.
0045-7949,
9
(
5
), pp.
484
494
.
10.
Breitung
,
K.
, 1984, “
Asymptotic Approximations for Multinormal Integrals
,”
J. Eng. Mech.
0733-9399,
110
, pp.
357
366
.
11.
Der Kiureghian
,
A.
,
Lin
,
L. Z.
, and
Hwang
,
S. J.
, 1998, “
Second-Order Reliability Approximation
,”
J. Eng. Mech.
0733-9399,
113
(
8
), pp.
1208
25
.
12.
Köylüoğlu
,
H. U.
, and
Nielsen
,
S. R. K.
, 1988, “
New Approximations for SORM Integrals
,”
Struct. Safety
0167-4730,
5
, pp.
119
126
.
13.
Tvedt
,
L.
, 1990, “
Distribution of Quadratic Forms in Normal Space-Application to Structural Reliability
,”
J. Eng. Mech.
0733-9399,
116
(
6
), pp.
1183
1197
.
14.
Cai
,
G. Q.
, and
Elishakoff
,
I.
, 1994, “
Refined Second-Order Reliability Analysis
,”
Struct. Safety
0167-4730,
14
, pp.
267
276
.
15.
Zhao
,
Y.
, and
Ono
,
T.
, 1999, “
A General Procedure for First/Second-Order Reliability Method (FORM/SORM)
,”
Struct. Safety
0167-4730,
21
(
2
), pp.
95
112
.
16.
Der Kiureghian
,
A.
, and
Dakessian
,
T.
, 1998, “
Multiple Design Points in First and Second-Order Reliability
,”
Struct. Safety
0167-4730,
20
(
1
), pp.
37
49
.
17.
Mahadevan
,
S.
, and
Shi
,
P.
, 2001, “
Multiple Linearization Method for Nonlinear Reliability Analysis
,”
J. Eng. Mech.
0733-9399,
127
(
11
), pp.
1165
1173
.
18.
Bucher
,
C. G.
, 1988, “
Adaptive Sampling—An Iterative Fast Monte Carlo Procedure
,”
Struct. Safety
0167-4730,
5
, pp.
119
126
.
19.
Melchers
,
R. E.
, 1989, “
Improved Importance Sampling Methods for Structural System Reliability Calculation
,”
Proceedings, International Conference on Structural Safety and Reliability (ICOSSAR)
, pp.
1185
1192
.
20.
Wu
,
Y. T.
, 1992, “
An Adaptive Importance Sampling Method for Structural System Reliability Analysis and Design, Reliability Technology 1992
,”
ASME Winter Annual Meeting, AD-28
,
T. A.
Cruse
, ed.,
Anaheim, CA
, pp.
217
231
.
21.
Karamchandani
,
A.
,
Bjerager
,
P.
, and
Cornell
,
C. A.
, 1989, “
Adaptive Importance Sampling
,”
Fifth International Conference on Structural Safety and Reliability
,
A. H.-S.
Ang
,
M.
Shinozuka
, and
G. I.
Schuëller
, eds.,
ASCE
,
New York
, pp.
855
862
.
22.
Mahadevan
,
S.
, and
Dey
,
A.
, 1997, “
Adaptive Monte Carlo Simulation for Time-Variant Reliability Analysis of Brittle Structures
,”
AIAA J.
0001-1452,
35
(
2
), pp.
321
326
.
23.
Mahadevan
,
S.
, and
Raghothamachar
,
P.
, 2000, “
Adaptive Simulation for System Reliability Analysis of Large Structures
,”
Comput. Struct.
0045-7949,
77
, pp.
725
734
.
24.
Zou
,
T.
,
Mahadevan
,
S.
,
Mourelatos
,
Z. P.
, and
Meernik
,
P. R.
, 2002, “
Reliability Analysis of Automotive Body-Door Subsystem
,”
Reliab. Eng. Syst. Saf.
0951-8320,
78
(
3
), pp.
315
324
.
25.
Cornell
,
C. A.
, 1967, “
Bounds on the Reliability of Structural Systems
,”
J. Struct. Div.
0044-8001,
93
(ST1), pp.
171
200
.
26.
Ditlevsen
,
O.
, 1979, “
Narrow Reliability Bounds for Structural Systems
,”
J. Struct. Mech.
0360-1218,
7
(
4
), pp.
453
472
.
27.
Xiao
,
Q.
, and
Mahadevan
,
S.
, 1994, “
Second-Order Upper Bounds on Probability of Intersection of Failure Events
,”
J. Eng. Mech.
0733-9399,
120
(
3
), pp.
670
674
.
28.
Hohenbichler
,
M.
, and
Rackwitz
,
R.
, 1985, “
A Bound and an Approximation to the Multivariate Normal Distribution Function
,”
Math. Japonica
0025-5513,
30
(
5
), pp.
821
828
.
29.
Gollwitzer
,
S.
, and
Rackwitz
,
R.
, 1988, “
An Efficient Numerical Solution to the Multinormal Integral
,”
Probab. Eng. Mech.
0266-8920,
3
(
2
), pp.
98
101
.
30.
Schuëller
,
G. I.
, and
Stix
,
R.
, 1987, “
A Critical Appraisal of Methods to Determine Failure Probabilities
,”
Struct. Safety
0167-4730,
4
(
4
), pp.
193
209
.
31.
Fu
,
G.
, and
Moses
,
F.
, 1993, “
Multimodal Simulation Method for System Reliability Analysis
,”
J. Eng. Mech.
0733-9399,
119
(
6
), pp.
1173
1179
.
32.
Ditlevsen
,
O.
, and
Bjerager
,
P.
, 1987, “
Plastic Reliability Analysis by Directional Simulation
,” Technical University of Denmark, DCAMM Report No. 353.
33.
Enright
,
M. P.
, and
Frangopol
,
D. M.
, 1999, “
Reliability-Based Condition Assessment of Deteriorating Concrete Bridges Considering Load Redistribution
,”
Struct. Safety
0167-4730,
21
(
2
), pp.
159
195
.
34.
Shi
,
P.
, and
Mahadevan
,
S.
, 2003, “
Corrosion Fatigue and Multiple Site Damage Reliability Analysis
,”
Int. J. Fatigue
0142-1123,
25
(
6
), pp.
457
469
.
35.
Ambartzumian
,
R.
,
Der Kiureghian
,
A.
,
Ohanian
,
V.
, and
Sukiasian
,
H.
, 1998, “
Multinormal Probability by Sequential Conditioned Importance Sampling: Theory and Application
,”
Probab. Eng. Mech.
0266-8920,
13
(
4
), pp.
299
308
.
36.
Pandey
,
M. D.
, and
Sarkar
,
A.
, 2002, “
Comparison of a Simple Approximation for Multinormal Integration With an Importance Sampling-Based Simulation Method
,”
Probab. Eng. Mech.
0266-8920,
17
, pp.
215
218
.
37.
Au
,
S. K.
, and
Beck
,
J. L.
, 1999, “
A New Adaptive Importance Sampling Scheme for Reliability Calculations
,”
Struct. Safety
0167-4730,
21
(
2
), pp.
135
158
.
38.
Faravelli
,
L.
, 1989, “
Response Surface Approach for Reliability Analysis
,”
J. Eng. Mech.
0733-9399,
115
(
12
), pp.
2763
2781
.
39.
Bucher
,
C.
, and
Bourgund
,
U.
, 1990, “
A Fast and Efficient Response Surface Approach for Structural Reliability Problems
,”
Struct. Safety
0167-4730,
7
, pp.
57
66
.
40.
Breitung
,
K.
, and
Faravelli
,
L.
, 1996, “
Response Surface Methods and Asymptotic Approximations
,”
Mathematical Models for Structural Reliability
,
F.
Casciati
and
J. B.
Roberts
, eds.,
CRC
,
Boca Raton, FL
, Chap.
5
, pp.
237
298
.
41.
Zheng
,
Y.
, and
Das
,
T.
, 2000, “
Improved Response Surface Method and Its Application to Stiffened Plate Reliability Analysis
,”
Eng. Struct.
0141-0296,
22
, pp.
544
551
.
42.
Simpson
,
T. W.
,
Mauery
,
T. M.
,
Korte
,
J. J.
, and
Mistree
,
F.
, 2001, “
Kriging Models for Global Approximation in Simulation-Based Multidisciplinary Design Optimization
,”
AIAA J.
0001-1452,
39
(
12
), pp.
2233
2241
.
43.
Pitchumani
,
R.
, and
Mawardi
,
A.
, 2005, “
SAMS: Stochastic Analysis With Minimal Sampling—A Fast Algorithm for Analysis and Design Under Uncertainty
,”
ASME J. Mech. Des.
1050-0472,
127
, pp.
558
571
.
44.
Shan
,
S.
, and
Wang
,
G. G.
, 2006, “
Failure Surface Frontier for Reliability Assessment on Expensive Performance Function
,”
ASME J. Mech. Des.
1050-0472,
128
, pp.
1227
1235
.
45.
Johnson
,
M.
,
Moore
,
L.
, and
Ylvisaker
,
D.
, 1990, “
Minimax and Maximin Distance Designs
,”
J. Stat. Plan. Infer.
0378-3758,
26
, pp.
131
148
.
46.
Morris
,
M.
, and
Mitchell
,
T.
, 1995, “
Exploratory Design for Computer Experiments
,”
J. Stat. Plan. Infer.
0378-3758,
43
, pp.
381
402
.
47.
Park
,
J.-S.
, 1994, “
Optimal Latin-Hypercube Designs for Computer Experiments
,”
J. Stat. Plan. Infer.
0378-3758,
39
, pp.
95
111
.
48.
Fan
,
J.
, and
Gijbels
,
I.
, 1996,
Local Polynomial Modeling and Its Applications
,
Chapman and Hall
,
London
.
49.
Haldar
,
A.
, and
Mahadevan
,
S.
, 2000,
Probability, Reliability and Statistical Methods in Engineering Design
,
Wiley
,
New York
.
50.
Dean
,
A.
, and
Lewis
,
S.
, 2006,
Screening: Methods for Experimentation in Industry, Drug Discovery, and Genetics
,
Springer-Verlag
,
New York
.
You do not currently have access to this content.