A circolimaçon positive displacement machine is driven by a limaçon mechanism, but the profiles of its rotor and housing are circular arcs. As such, its design models are different from those of the limaçon-to-limaçon machines, whose profiles are cut to the limaçon equations. For the benefit of the reader, the paper starts with a brief background on the general geometric aspects of the limaçon fluid processing technology. However, the focus is then turned to the circolimaçon machine, where its design parameters are introduced and geometric models are proposed to assist with the design process. Also, a computational inverse design model has been employed to work out a set of congruent geometric parameters to meet certain design requirements. Case studies are presented at the end of the paper to give the reader a numerical perspective on the design process of this class of positive displacement machines.

1.
Fleming
,
J. S.
,
Tang
,
Y.
, and
Cook
,
G.
, 1998, “
The Twin Helical Screw Compressor Part 1: Development, Applications and Competitive Position
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
0954-4062,
212
(
5
), pp.
355
367
.
2.
Kauder
,
K.
, and
Wenderott
,
D.
, 2002, “
Analysis of Flowrates as a Basis for the Simulation of Dry-Running Rotational Positive Displacement Pumps
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
0954-4062,
216
(
12
), pp.
1197
1205
.
3.
Mimmi
,
G.
, and
Pennacchi
,
P.
, 1999, “
Analytical Model of a Particular Type of Positive Displacement Blower
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
0954-4062,
213
(
5
), pp.
517
526
.
4.
Stosic
,
N.
, 1998, “
On Gearing of Helical Screw Compressor Rotors
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
0954-4062,
212
(
7
), pp.
587
594
.
5.
Hwang
,
Y.-W.
, and
Hsieh
,
C.-F.
, 2007, “
Geometric Design Using Hypotrochoid and Nonundercutting Conditions for an Internal Cycloid Gear
,”
ASME J. Mech. Des.
1050-0472,
129
, pp.
413
420
.
6.
Cuo
,
C.
, and
Tang
,
Y.
, 2003, “
Influence of Process Parameters on Screw Rotor Profiles
,”
Mach. Sci. Technol.
1091-0344,
7
(
1
), pp.
105
118
.
7.
Yang
,
S.-C.
, 2004, “
A Mathematical Model for a CC-Type Single Screw Compressor
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
0954-4062,
218
(
4
), pp.
437
448
.
8.
Tong
,
S.-H.
, and
Yang
,
D. C. H.
, 2005, “
Rotor Profiles Synthesis for Lobe Pumps With Flow Rate Functions
,”
ASME J. Mech. Des.
1050-0472,
127
, pp.
287
293
.
9.
Ooi
,
K. T.
, 2005, “
Design Optimization of a Rolling Piston Compressor for Refrigerators
,”
Appl. Therm. Eng.
1359-4311,
25
(
5–6
), pp.
813
829
.
10.
Gravesen
,
J.
, and
Henriksen
,
C.
, 2001, “
The Geometry of the Scroll Compressor
,”
SIAM Rev.
0036-1445,
34
(
1
), pp.
113
126
.
11.
Ertesvag
,
I. S.
, 2001, “
Analysis of the Vading Concept—A New Rotary-Piston Compressor, Expander and Engine Principle
,”
Proc. Inst. Mech. Eng., Part A
0957-6509,
216
(
3
), pp.
283
290
.
12.
Deng
,
K.
,
Dewa
,
A. S.
,
Ritter
,
D. C.
,
Bonham
,
C.
, and
Guckel
,
H.
, 1998, “
Characterization of Gear Pumps Fabricated by LIGA
,”
Microsyst. Technol.
0946-7076,
4
, pp.
163
167
.
13.
Sultan
,
I. A.
, 2005, “
The Limacon of Pascal: Mechanical Generation and Utilisation for Fluid Processing
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
0954-4062,
219
(
8
), pp.
813
822
.
14.
Sultan
,
I. A.
, 2006, “
Profiling Rotors for Limaçon-to-Limaçon Compression-Expansion Machines
,”
ASME J. Mech. Des.
1050-0472,
128
, pp.
787
793
.
15.
Sultan
,
I. A.
, 2008, “
Inverse Geometric Design for a Class of Rotary Positive Displacement Machines
,”
Inverse Probl. Sci. Eng.
,
16
(
2
), pp.
127
139
.
16.
Artobolevsky
,
I. I.
, 1964,
Mechanisms for Generation of Plane Curves
,
Pergamon
,
New York
.
17.
Costa
,
S. I. R.
,
Grou
,
M. A.
, and
Figueiredo
,
V.
, 1999, “
Mechanical Curves—A Kinematic Creek Look Through the Computer
,”
Int. J. Math. Educ. Sci. Tech.
,
30
(
3
), pp.
459
468
.
You do not currently have access to this content.