Analytical target cascading (ATC) is an effective decomposition approach used for engineering design optimization problems that have hierarchical structures. With ATC, the overall system is split into subsystems, which are solved separately and coordinated via target/response consistency constraints. As parallel computing becomes more common, it is desirable to have separable subproblems in ATC so that each subproblem can be solved concurrently to increase computational throughput. In this paper, we first examine existing ATC methods, providing an alternative to existing nested coordination schemes by using the block coordinate descent method (BCD). Then we apply diagonal quadratic approximation (DQA) by linearizing the cross term of the augmented Lagrangian function to create separable subproblems. Local and global convergence proofs are described for this method. To further reduce overall computational cost, we introduce the truncated DQA (TDQA) method, which limits the number of inner loop iterations of DQA. These two new methods are empirically compared to existing methods using test problems from the literature. Results show that computational cost of nested loop methods is reduced by using BCD, and generally the computational cost of the truncated methods is superior to the nested loop methods with lower overall computational cost than the best previously reported results.

1.
Kim
,
H. M.
,
Michelena
,
N. F.
,
Papalambros
,
P. Y.
, and
Jiang
,
T.
, 2003, “
Target Cascading in Optimal System Design
,”
ASME J. Mech. Des.
1050-0472,
125
(
3
), pp.
474
480
.
2.
Allison
,
J.
,
Kokkolaras
,
M.
,
Zawaislak
,
M.
, and
Papalambros
,
P.
, 2005, “
On the Use of Analytical Target Cascading and Collaborative Optimization for Complex System Design
,”
Proceedings of 6th World Congress on Structural and Multidisciplinary Optimization
, Rio de Janerio, Brazil.
3.
DeMiguel
,
A.
, and
Murray
,
W.
, 2006, “
A Local Convergence Analysis of Bilevel Decomposition Algorithms
,”
Optim. Eng.
1389-4420,
7
, pp.
99
133
.
4.
Haftka
,
R. T.
, and
Watson
,
L. T.
, 2005, “
Multidisciplinary Design Optimization With Quasiseparable Subsystems
,”
Optim. Eng.
1389-4420,
6
(
1
), pp.
9
20
.
5.
Tosserams
,
S.
,
Etman
,
L. F. P.
, and
Rooda
,
J. E.
, 2007, “
An Augmented Lagrangian Decomposition Method for Quasi-Separable Problems in MDO
,”
Struct. Multidiscip. Optim.
1615-147X,
34
, pp.
211
227
.
6.
Kim
,
H. M.
,
Kokkolaras
,
M.
,
Louca
,
L. S.
,
Delagrammatikas
,
G. J.
,
Michelena
,
N. F.
,
Filipi
,
Z. S.
,
Papalambros
,
P. Y.
,
Stein
,
J. L.
, and
Assanis
,
D. N.
, 2002, “
Target Cascading in Vehicle Redesign: A Class VI Truck Study
,”
Int. J. Veh. Des.
0143-3369,
29
(
3
), pp.
199
225
.
7.
Choudhary
,
R.
,
Malkawi
,
A.
, and
Paplambros
,
P. Y.
, 2005, “
Analytic Target Cascading in Simulation-Based Building Design
,”
Autom. Constr.
0926-5805,
14
(
4
), pp.
551
568
.
8.
Michalek
,
J. J.
,
Ceryan
,
O.
,
Papalambros
,
P. Y.
, and
Koren
,
Y.
, 2006, “
Balancing Marketing and Manufacturing Objectives in Product Line Design
,”
ASME J. Mech. Des.
1050-0472,
128
(
6
), pp.
1196
1204
.
9.
Michalek
,
J. J.
,
Feinberg
,
F. M.
, and
Papalambros
,
P. Y.
, 2005, “
Linking Marketing and Engineering Product Design Decisions via Analytical Target Cascading
,”
Journal of Product Innovation Management
,
22
, pp.
42
62
.
10.
Michelena
,
N.
,
Park
,
H.
, and
Papalambros
,
P. Y.
, 2003, “
Convergence Properties of Analytical Target Cascading
,”
AIAA J.
0001-1452,
41
(
5
), pp.
897
905
.
11.
Michalek
,
J. J.
, and
Papalambros
,
P. Y.
, 2005, “
Weights, Norms, and Notation in Analytical Target Cascding
,”
ASME J. Mech. Des.
1050-0472,
127
(
3
), pp.
499
501
.
12.
Tosserams
,
S.
,
Etman
,
L. F. P.
, and
Rooda
,
J. E.
, 2006, “
An Augmented Lagrangian Relaxation for Analytical Target Cascading Using the Alternating Directions Method of Multipliers
,”
Struct. Multidiscip. Optim.
1615-147X,
31
(
3
), pp.
176
189
.
13.
Bertsekas
,
D. P.
, 2003,
Nonlinear Programming
,
2nd ed.
,
Athena Scientific
, Belmont, MA.
14.
Michalek
,
J. J.
, and
Papalambros
,
P. Y.
, 2005, “
An Efficient Weighting Update Method to Achieve Acceptable Inconsistency Deviation in Analytical Target, Cascading
,”
J. Qual. Maint. Eng.
1355-2511,
127
(
3
), pp.
206
214
.
15.
Lassiter
,
J. B.
,
Wiecek
,
M. M.
, and
Andrighetti
,
K. R.
, 2005, “
Lagrangian Coordination and Analytical Target Cascading: Solving ATC-Decomposed Problems With Lagrangian Duality
,”
Optim. Eng.
1389-4420,
6
(
3
) pp.
361
381
.
16.
Kim
,
H. M.
,
Chen
,
W.
, and
Wiecek
,
M. M.
, 2006, “
Lagrangian Coordination for Enhancing the Convergence of Analytical Target Cascading
,”
AIAA J.
0001-1452,
44
(
10
), pp.
2197
2207
.
17.
Stephanopoulos
,
G.
, and
Westerberg
,
A. W.
, 1975, “
The Use of Hestenes’ Method of Multipliers to Resolve Dual Gaps in Engineering System Optimization
,”
J. Optim. Theory Appl.
0022-3239,
15
(
3
), pp.
285
309
.
18.
Nocedal
,
J.
, and
Wright
,
S. J.
, 1999,
Numerical Optimization
,
Springer Series in Operations Research
,
Springer
, New York.
19.
Bertesekas
,
D. P.
, and
Tsitsiklis
,
J. N.
, 1989,
Parallel and Distributed Computation
,
Prentice-Hall
, Englewood Cliffs, NJ.
20.
Ruszcynski
,
A.
, 1995, “
On Convergence of an Augmented Lagrangian Decomposition Method for Space Convex Optimization
,”
Math. Op. Res.
0364-765X,
20
(
3
), pp.
634
656
.
You do not currently have access to this content.