In this paper, the functional-failure identification and propagation (FFIP) framework is introduced as a novel approach for evaluating and assessing functional-failure risk of physical systems during conceptual design. The task of FFIP is to estimate potential faults and their propagation paths under critical event scenarios. The framework is based on combining hierarchical system models of functionality and configuration, with behavioral simulation and qualitative reasoning. The main advantage of the method is that it allows the analysis of functional failures and fault propagation at a highly abstract system concept level before any potentially high-cost design commitments are made. As a result, it provides the designers and system engineers with a means of designing out functional failures where possible and designing in the capability to detect and mitigate failures early on in the design process. Application of the presented method to a fluidic system example demonstrates these capabilities.

1.
Johnson
,
S.
, 2005, “
Introduction to System Health Engineering and Management in Aerospace
,”
First Integrated Systems Health Engineering and Management Forum
,
Napa, CA
, Nov.
2.
Department of Defense, “
Procedures for Performing Failure Mode, Effects, and Criticality Analysis
,” MIL-STD-1629A.
3.
Vesely
,
W. E.
,
Goldberg
,
F. F.
,
Roberts
,
N. H.
, and
Haasi
,
D. F.
, 1981,
The Fault Tree Handbook
,
US Nuclear Regulatory Commission
, NUREG 0492,
Washington, DC
.
4.
Greenfield
,
M. A.
, 2000, “
NASA’s Use of Quantitative Risk Assessment for Safety Upgrades
,”
IAAA Symposium
,
Rio de Janeiro, Brazil
.
5.
Stamatelatos
,
M.
, and
Apostolakis
,
G.
, 2002, “
Probabilistic Risk Assessment Procedures Guide for NASA Managers and Practitioners v1.1
,” NASA, Safety and Mission Assurance.
6.
Giarratano
,
Joseph C.
, and
Riley
,
Gary D.
, 2004,
Expert Systems: Principles and Programming
,
4th ed.
,
PWS
,
Boston MA
, 2004.
7.
Shortliffe
,
E.
, 1976,
MYCIN: Computer-Based Medical Consultations
,
Elsevier
,
New York
.
8.
Touchton
,
R. A.
, 1986, “
Emergency Classification: A Real Time Expert System Application
,”
Proceedings of SouthCon
.
9.
deKleer
,
J.
, and
Williams
,
B. C.
, 1987, “
Diagnosing Multiple Faults
,”
Artif. Intell.
0004-3702,
32
, pp.
97
130
.
10.
Chen
,
J.
, and
Patton
,
R. J.
, 1998,
Robust Model-Based Fault Diagnosis for Dynamic Systems
,
Kluwer Academic
,
Dordrecht
.
11.
Dvorak
,
D.
, and
Kuipers
,
B. J.
, 1989, “
Model Based Monitoring of Dynamic Systems
,” IJCAI.
12.
Patton
,
R.
,
Frank
,
P.
, and
Clark
,
R.
, 1989,
Fault Diagnosis in Dynamic Systems: Theory and Applications
,
Prentice Hall
,
Hertfordshire, UK
.
13.
Williams
,
B. C.
, and
Nayak
,
P. P.
, 1996, “
A Model-Based Approach to Reactive Self-Configuring Systems
,”
AAAI
, pp.
971
978
.
14.
Kurien
,
J.
, and
Nayak
,
P.
, 2000, “
Back to the Future with Consistency-based Trajectory Tracking
,”
AAAI
, pp.
370
377
.
15.
Kramer
,
M. A.
, and
Palowitch
,
B. L.
, Jr.
, 2004, “
A Rule-Based Approach to Fault Diagnosis Using the Signed Directed Graph
,”
AIChE J.
0001-1541,
33
(
7
), pp.
1067
1078
.
16.
Rao.
,
N. S. V.
, 1996, “
On Parallel Algorithms for Single-Fault Diagnosis in Fault Propagation Graph Systems
,”
IEEE Trans. Parallel Distrib. Syst.
1045-9219,
7
(
12
), pp.
1217
1223
.
17.
Chessa
,
S.
, and
Santi
,
P.
, 2001, “
Operative Diagnosis of Graph-Based Systems With Multiple Faults
,”
IEEE Trans. Syst. Man Cybern., Part A. Syst. Humans
1083-4427,
31
(
2
), pp.
112
119
.
18.
Tu
,
F.
,
Pattipati
,
K. R.
,
Deb
,
S.
, and
Malepati
,
V. N.
, 2003, “
Computationally Efficient Algorithms for Multiple Fault Diagnosis in Large Graph-Based Systems
,”
IEEE Trans. Syst. Man Cybern., Part A. Syst. Humans
1083-4427,
33
, pp.
73
85
.
19.
Stevenson
,
R. W.
,
Miller
,
J. G.
, and
Austin
,
M. E.
, 1991, “
Failure Environment Analysis Tool (FEAT) Development Status
,”
AIAA Computing in Aerospace VIII Conference
,
Baltimore, MD
, AIAA 91-3803.
20.
Abdelwahed
,
S.
,
Karsai
,
G.
, and
Biswas
,
G.
, 2003, “
System Diagnosis Using Hybrid Failure Propagation Graphs
,”
Vanderbilt University
, Technical Report ISIS-02-302.
21.
Sacks
,
I. J.
, 1985, “
Digraph Matrix Analysis
,”
IEEE Trans. Reliab.
0018-9529,
R-34
(
5
), pp.
437
446
.
22.
Deb
,
S.
,
Pattipati
,
K. R.
,
Raghavan
,
V.
,
Shakeri
,
M.
, and
Shrestha
,
R.
, 1995 “
Multisignal Flow Graphs: A Novel Approach for System Testability Analysis and Fault Diagnosis
,”
IEEE Aerosp. Electron. Syst. Mag.
0885-8985,
10
(
5
), pp.
14
25
.
23.
QSI, Q.S.I., Testability Engineering and Maintenance System (TEAMS) Tool.
24.
Yairi
,
T.
,
Kato
,
Y.
, and
Hori
,
K.
, 2001, “
Fault Detection by Mining Association Rules From House-Keeping Data
,”
Proceedings of SAIRAS
.
25.
Berenji
,
H.
,
Ametha
,
J.
, and
Vengerov
,
D.
, 2003, “
Inductive Learning For Fault Diagnosis
,”
Proceedings of the 12th IEEE International Conference on Fuzzy Systems
, pp.
726
731
.
26.
Mehr
,
A. F.
, and
Tumer
,
I. Y.
, 2006, “
Risk Based Decision Making for Managing Resources During the Design of Complex Aerospace Systems
,”
ASME J. Mech. Des.
1050-0472,
128
(
4
), pp.
1014
1022
.
27.
Hoyle
,
C.
,
Mehr
,
A. F.
,
Tumer
,
I. Y.
, and
Chen
,
W.
, 2007 “
On Quantifying Cost-Benefit of ISHM in Aerospace Systems
,”
2007 IEEE Aerospace Conference
.
28.
Tumer
,
I. Y.
, 2005, “
Towards ISHM Co-Design: Methods and Practices for Fault Avoidance and Management During Early Phase Design
,”
First Integrated Systems Health Engineering and Management Forum
,
Napa, CA
, Nov.
29.
Hutcheson
,
R.
, and
Tumer
,
I. Y.
, 2005, “
Function-Based Co-Design Paradigm for Robust Health Management
,”
The fifth International Workshop on Structural Health Monitoring
,
Stanford, CA
, Sep.
30.
Tumer
,
I. Y.
, and
Stone
,
R. B.
, 2003, “
Mapping Function to Failure During High-Risk Component Development
,”
Res. Eng. Des.
0934-9839,
14
, pp.
25
33
.
31.
Stone
,
R. B.
,
Tumer
,
I. Y.
, and
VanWie
,
M.
, 2005, “
The Function-Failure Design Method
,”
ASME J. Mech. Des.
1050-0472,
127
(
3
), pp.
397
407
.
32.
Hirtz
,
J.
,
Stone
,
R.
,
McAdams
,
D.
,
Szykman
,
S.
, and
Wood
,
K.
, 2002, “
A Functional Basis for Engineering Design: Reconciling and Evolving Previous Efforts
,”
Res. Eng. Des.
0934-9839,
13
(
2
), pp.
65
82
.
33.
Tumer
,
I. Y.
,
Stone
,
R.
, and
Bell
,
D.
, 2003, “
Requirements for a Failure Mode Taxonomy for Use in Conceptual Design
,”
Proceedings of the International Conference on Engineering Design
,
ICED
,
Stockholm
, Paper No. 1612.
34.
Roberts
,
R.
,
Stone
,
R.
, and
Tumer
,
I. Y.
, 2002, “
Deriving Function-Failure Information for Failure-Free Rotorcraft Component Design
,”
Proceedings of ASME Design Engineering Technical Conference
,
Montreal, Canada
, DETC2002∕DFM-34166.
35.
Hutcheson
,
R.
, and
Tumer
,
I. Y.
, 2005, “
Function-Based Design of a Spacecraft Power Subsystem Diagnostics Testbed
,” ASME IMECE2005–81120.
36.
Grantham Lough
,
K.
,
Stone
,
R.
, and
Tumer
,
I.
, 2006, “
Prescribing and Implementing the Risk in Early Design (RED) Method
,”
Proceedings of the ASME DETC
,
Philadelphia, PA
.
37.
Pahl
,
G.
, and
Beitz
,
W.
, 1984, Engineering Design: A Systematic Approach, Design Council, London.
38.
Hirtz
,
J.
,
Stone
,
R.
,
McAdams
,
D.
,
Szykman
,
S.
, and
Wood
,
K.
, 2002, “
A Functional Basis for Engineering Design: Reconciling and Evolving Previous Efforts
,”
Res. Eng. Des.
0934-9839,
13
(
2
), pp.
65
82
.
39.
Kurtoglu
,
T.
,
Campbell
,
M. I.
,
Gonzales
,
J.
,
Bryant
,
C. R.
,
McAdams
,
D. A.
, and
Stone
,
R. B.
, 2005, “
Capturing Empirically Derived Design Knowledge for Creating Conceptual Design Configurations
,”
Proceedings of DETC2005
,
Long Beach, CA
, Sep. 24–28.
40.
Kurtoglu
,
T.
,
Campbell
,
M.
,
Bryant
,
C.
,
Stone
, and
R.
,
McAdams
,
D.
, 2005, “
Deriving a Component Basis for Computational Functional Synthesis
,”
Proceedings of ICED’05
,
Melbourne, Australia
.
41.
Wertz
,
J. R.
, and
Larson
,
W. J.
, 1999,
Space Mission Analysis and Design
,
3rd ed.
,
Space Technology Library
, Microcosm,
Kluwer Academic
,
Dordrecht
.
42.
Qian
,
L.
, and
Gero
,
J. S.
1996, “
Function-Behaviour-Structure and Their Roles in Analogy-Based Design
,”
Artif. Intell. Eng. Des. Anal. Manuf.
0890-0604,
10
, pp.
289
312
.
43.
Mosleh
,
A.
,
Groen
,
F.
,
Hu
,
Y.
,
Zhu
,
D.
,
Najad
,
H.
, and
Piers
,
T.
, 2004, “
Simulation-Based Probabilistic Risk Analysis Report
,” Center for Risk and Reliability,
University of Maryland
.
44.
Forbus
,
K.
, 1984, “
Qualitative Process Theory
,”
Artif. Intell.
0004-3702,
24
, pp.
85
168
.
45.
Kuipers
,
B. J.
, 1986, “
Qualitative Simulation
,”
Artif. Intell.
0004-3702,
29∕3
, pp.
289
338
.
46.
Aldemir
,
T.
, 1987, “
Computer-Assisted Markov Failure Modeling of Process-Control Systems
,”
IEEE Trans. Reliab.
0018-9529,
36
(
1
), pp.
133
149
.
47.
Cojazzi
,
G.
, 1996, “
The DYLAM Approach for the Dynamic Reliability Analysis of Systems
,”
Reliab. Eng. Syst. Saf.
0951-8320,
52
(
3
), pp.
279
296
.
48.
Siu
,
N.
, 1994, “
Risk Assessment For Dynamic Systems—An Overview
,”
Reliab. Eng. Syst. Saf.
0951-8320,
43
(
1
), pp.
43
73
.
49.
Hu
,
Y.
, 2005, “
A Guided Simulation Methodology for Dynamic Risk Assessment of Complex Systems
,” Dissertation, University of Maryland, College Park.
50.
Kapadia
,
R.
, 2003, “
SymCure: A Model-Based Approach for Fault Management With Causal Directed Graphs
,” IEA∕AIE 2003, LNAI 2718, pp.
582
591
.
51.
Mosterman
,
P. J.
, and
Biswas
,
G.
, 1999, “
Diagnosis of Continuous Valued Systems in Transient Operating Regions
,”
IEEE Trans. Syst. Man Cybern., Part A. Syst. Humans
1083-4427,
29
(
6
), pp.
545
565
.
You do not currently have access to this content.