In this work, a new compliant bistable mechanism design is introduced. The combined use of pseudo-rigid-body model (PRBM) and the Elastica buckling theory is presented for the first time to analyze the new design. This mechanism consists of the large deflecting straight beams, buckling beams, and a slider. The kinematic analysis of this new mechanism is studied, using nonlinear Elastica buckling beam theory, the PRBM of a large deflecting cantilever beam, the vector loop closure equations, and numerically solving nonlinear algebraic equations. A design method of the bistable mechanism in microdimensions is investigated by changing the relative stiffness of the flexible beams. The actuation force versus displacement characteristics of several cases is explored and the full simulation results of one of the cases are presented. This paper demonstrates the united application of the PRBM and the buckling Elastica solution for an original compliant mechanism kinematic analysis. New compliant mechanism designs are presented to highlight where such combined kinematic analysis is required.

1.
Erdman
,
G.
, and
Loftness
,
P. E.
, 2005, “
Synthesis of Linkages for Cataract Surgery: Storage, Folding, and Delivery of Replacement Intraocular Lenses (IOLs)
,”
Mech. Mach. Theory
0094-114X,
40
, pp.
337
351
.
2.
Howell
,
L. L.
, 2001,
Compliant Mechanisms
,
1st ed.
,
Wiley
,
New York
.
3.
Vogel
,
S.
, 1995, “
Better Bent Than Broken
,”
Discover
0274-7529 (
May
), pp.
62
67
.
4.
Mankame
,
N. D.
, and
Ananthasuresh
,
G. K.
, 2004, “
A Novel Compliant Mechanism for Converting Reciprocating Translation Into Enclosing Curved Paths
,”
ASME J. Mech. Des.
1050-0472,
126
, pp.
667
672
.
5.
Crane
,
N. B.
,
Howell
,
L. L.
,
Weight
,
B. L.
, and
Magleby
,
S. P.
, 2004, “
Compliant Floating-Opposing-Arm (FOA) Centrifugal Clutch
,”
ASME J. Mech. Des.
1050-0472,
126
, pp.
169
177
.
6.
Sönmez
,
Ü.
, 2007, “
Introduction to Compliant Long Dwell Mechanism Designs Using Buckling Beams and Arcs
,”
ASME J. Mech. Des.
1050-0472,
129
, pp.
831
843
.
7.
Guérinot
,
A. E.
,
Magleby
,
S. P.
,
Howell
,
L. L.
, and
Todd
,
R. H.
, 2005, “
Compliant Joint Design Principles for High Compressive Load Situations
,”
ASME J. Mech. Des.
1050-0472,
127
, pp.
774
781
.
8.
Yu
,
Y. Q.
,
Howell
,
L. L.
,
Lusk
,
C.
,
Yue
,
Y.
, and
He
,
M. G.
, 2005, “
Dynamic Modeling of Compliant Mechanisms Based on the Pseudo-Rigid-Body Model
,”
ASME J. Mech. Des.
1050-0472,
127
, pp.
760
765
.
9.
Wang
,
M. Y.
,
Chen
,
S.
,
Wang
,
X.
, and
Mei
,
Y.
, 2005, “
Design of Multimaterial Compliant Mechanisms Using Level-Set Methods
,”
ASME J. Mech. Des.
1050-0472,
127
, pp.
941
956
.
10.
Lan
,
C. C.
, and
Lee
,
K. M.
, 2006, “
Generalized Shooting Method for Analyzing Compliant Mechanisms With Curved Members
,”
ASME J. Mech. Des.
1050-0472,
128
, pp.
765
775
.
11.
Dado Mohammad
,
H. F.
, 2005, “
Limit Position Synthesis and Analysis of Compliant 4‐Bar Mechanisms With Specified Energy Levels Using Variable Parametric Pseudo-Rigid-Body Model
,”
Mech. Mach. Theory
0094-114X,
40
pp.
977
992
.
12.
Griffis
,
M.
, 2006, “
Preloading Compliant Couplings and the Applicability of Superposition
,”
Mech. Mach. Theory
0094-114X,
41
, pp.
845
862
.
13.
Kim
,
C. J.
,
Kota
,
S.
, and
Moon
,
Y. M.
, 2006, “
An Instant Center Approach Toward the Conceptual Design of Compliant Mechanisms
,”
ASME J. Mech. Des.
1050-0472,
128
, pp.
542
550
.
14.
Su
,
H.
, and
McCarthy
,
J. M.
, 2006, “
A Polynomial Homotopy Formulation of the Inverse Static Analysis of Planar Compliant Mechanisms
,”
ASME J. Mech. Des.
1050-0472,
128
(
4
), pp.
776
786
.
15.
Maddisetty
,
H.
, and
Frecker
,
M.
, 2004, “
Dynamic Topology Optimization of Compliant Mechanisms and Piezoceramic Actuators
,”
ASME J. Mech. Des.
1050-0472,
126
, pp.
975
983
.
16.
Saxena
,
A.
, 2005, “
Synthesis of Compliant Mechanisms for Path Generation Using Genetic Algorithm
,”
ASME J. Mech. Des.
1050-0472,
127
, pp.
745
752
.
17.
Zhou
,
H.
, and
Ting
,
K. L.
, 2005, “
Topological Synthesis of Compliant Mechanisms Using Spanning Tree Theory
,”
ASME J. Mech. Des.
1050-0472,
127
, pp.
753
759
.
18.
Hull
,
P. V.
, and
Canfield
,
S.
, 2006, “
Optimal Synthesis of Compliant Mechanisms Using Subdivision and Commercial FEA
,”
ASME J. Mech. Des.
1050-0472,
128
, pp.
337
348
.
19.
Jensen
,
B. D.
, and
Howell
,
L. L.
, 2002, “
The Modeling of Cross-Axis Flexural Pivots
,”
Mech. Mach. Theory
0094-114X,
37
, pp.
461
476
.
20.
Lobontiu
,
N.
, and
Garcia
,
E.
, 2005, “
Circular-Hinge Line Element for Finite Element Analysis of Compliant Mechanisms
,”
ASME J. Mech. Des.
1050-0472,
127
, pp.
766
773
.
21.
Zettl
,
B.
,
Szyszkowski
,
W.
, and
Zhang
,
W. J.
, 2005, “
On Systematic Errors of Two-Dimensional Finite Element Modeling of Right Circular Planar Flexure Hinges
,”
ASME J. Mech. Des.
1050-0472,
127
, pp.
782
787
.
22.
Shoup
,
T. E.
, and
McLarnan
,
C. W.
, 1972, “
The Design of a Bistable Mechanical Device
,” ASME Paper No. 73-WA∕DE-17.
23.
Gomm
,
T.
,
Howell
,
L. L.
, and
Selfridge
,
R. H.
, 2002, “
In-Plane Linear Displacement Bistable Micro Relay
,”
J. Micromech. Microeng.
0960-1317,
12
, pp.
257
264
.
24.
Jensen
,
B. D.
,
Howell
,
L. L.
, and
Salmon
,
L. G.
, 1999, “
Design of Two-Link, In-Plane, Bistable Compliant Micro-Mechanisms
,”
ASME J. Mech. Des.
1050-0472,
121
(
3
), pp.
416
423
.
25.
Baker
,
M. S.
, and
Howell
,
L. L.
, 2002, “
On-Chip Actuation of an In-Plane Compliant Bistable Micromechanism
,”
J. Microelectromech. Syst.
1057-7157,
11
, pp.
566
573
.
26.
Tsay
,
J.
,
Su
,
L. Q.
, and
Sung
,
C. K.
, 2005, “
Design of a Linear Micro-Feeding System Featuring Bistable Mechanisms
,”
J. Micromech. Microeng.
0960-1317,
15
pp.
63
70
.
27.
Casals-Terre
,
J.
, and
Shkel
,
A.
, 2004, “
Dynamic Analysis of a Snap-Action Micromechanism
,”
Proceedings of IEEE Conference
, pp.
1245
1248
.
28.
Qiu
,
J.
,
Lang
,
J. H.
, and
Slocum
,
H.
, 2004, “
A Curved-Beam Bistable Mechanism
,”
J. Microelectromech. Syst.
1057-7157,
13
(
2
), pp.
137
146
.
29.
Jensen
,
B. D.
, and
Howell
,
L. L.
, 2004, “
Bistable Configurations of Compliant Mechanisms Modeled Using Four Links and Translational Joints
,”
ASME J. Mech. Des.
1050-0472,
126
, pp.
657
666
.
30.
Su
,
H. J.
, and
McCarthy
,
J. M.
, 2007, “
Synthesis of Bistable Compliant Four-Bar Mechanisms Using Polynomial Homotopy
,”
ASME J. Mech. Des.
1050-0472,
129
, pp.
1094
1098
.
31.
Sönmez
,
Ü.
, 2000, “
Compliant Mechanism Design and Synthesis Using Buckling and Snap-Through Buckling of Flexible Members
,” Ph.D. thesis, The Pennsylvania State University, State College, PA.
32.
Howell
,
L. L.
, 1993, “
A Generalized Loop-Closure Theory for the Analysis and Synthesis of Compliant Mechanisms
,” Ph.D. thesis, Purdue University, West Lafayette, IN.
33.
Euler
,
L.
, 1744,
Methodus Inveniendi Lineas Curvas
, English translation by
W. A.
Oldfather
,
C. A.
Ellis
, and
D. M.
Brown
,
The University of Chicago Press
,
Chicago
, Appendix 1, Vol.
20
, pp.
72
160
.
34.
Shoup
,
T. E.
, 1969, “
An Analytical Investigation of the Large Deflections of Flexible Beam Springs
,” Ph.D. thesis, The Ohio State University, Columbus, OH.
35.
Frisch-Fay
,
R.
, 1962,
Flexible Bars
,
Butterworth
,
London
.
36.
Shoup
,
T. E.
, and
McLarnan
,
C. W.
, 1971, “
On the Use of a Doubly Clamped Flexible Strip as a Nonlinear Spring
,”
ASME J. Eng. Ind.
0022-0817, pp.
559
560
.
37.
Bisshopp
,
K. E.
, and
Drucker
,
D. C.
, 1945, “
Large Deflection of Cantilever Beams
,”
Q. Appl. Math.
0033-569X,
3
(
3
), pp.
272
275
.
38.
Howell
,
L. L.
,
Midha
,
A.
, and
Norton
,
T. W.
, 1996, “
Evaluation of Equivalent Spring Stiffness for Use in a Pseudo-Rigid-Body Model of Large-Deflection Compliant Mechanisms
,”
ASME J. Mech. Des.
1050-0472,
118
(
1
), pp.
126
131
.
39.
Howell
,
L. L.
, and
Midha
,
A.
, 1995, “
Parametric Deflection Approximations for End Loaded, Large-Deflection Beams in Compliant Mechanisms
,”
ASME J. Mech. Des.
1050-0472,
117
(
1
), pp.
156
165
.
40.
Sharpe
,
W. N.
,
Jackson
,
K. M.
,
Hemker
,
K. J.
, and
Xie
,
Z.
, 2001, “
Effect of Specimen Size on Young’s Modulus and Fracture Strength of Polysilicon
,”
J. Microelectromech. Syst.
1057-7157,
10
(
3
), pp.
317
326
.
41.
Wittwer
,
J. W.
, 2005, “
Simulation-Based Design under Uncertainty for Compliant MicroElectroMechanical Systems
,” Ph.D. thesis, Brigham Young University, Provo, UT.
42.
Wittwer
,
J. W.
,
Howell
,
L. L.
, and
Chase
,
K. W.
, 2001, “
Modeling the Effects of Joint Clearances in Planar Micromechanisms
,”
Technical Proceedings of the 2001 International Conference on Modeling and Simulation of Microsystems
, pp.
374
377
.
43.
Bahrami
,
M.
, and
Ghanbari
,
A.
, 2005, “
Stochastic Linkage Model of a Compliant Bistable Micromechanism for Mechanical Error Analysis
,”
J. Micromech. Microeng.
0960-1317,
15
, pp.
1614
1623
.
44.
Lim
,
M. G.
,
Chang
,
J. C.
,
Schultz
,
D. P.
,
Howe
,
R. T.
, and
White
,
R. M.
, 1990, “
Polysilicon Microstructures to Characterize Static Friction
,”
Proceedings of the IEEE MEMS Workshop
,
Napa Valley, CA
, Feb. 11–14, pp.
82
88
.
45.
De Boera
,
M. P.
,
Redmondb
,
J. M.
, and
Michalskec
,
T. A.
, 1998, “
A Hinged-Pad Test Structure for Sliding Friction Measurement in Micromachining
,”
SPIE Proceedings, Materials and Device Characterization in Micromachining
, Vol.
3512
, pp.
241
250
.
46.
Wang
,
W.
,
Wang
,
Y.
,
Bao
,
H.
,
Xiong
,
B.
, and
Bao
,
M.
, 2002, “
Friction and wear properties in MEMS
,”
Sens. Actuators, A
0924-4247,
97–99
, pp.
486
491
.
47.
Wittwer
,
J. W.
,
Wait
,
S. M.
,
Howell
,
L. L.
, and
Cherry
,
M. S.
, 2002, “
Predicting the Performance of a Bistable Micro Mechanism Using Design Stage Uncertainty Analysis
,”
Proceedings of 2002 ASME International Mechanical Engineering Congress and Exposition
, Paper No. IMECE2002-33262.
48.
Hubbard
,
N. B.
,
Culpepper
,
M. L.
, and
Howell
,
L. L.
, 2006, “
Actuators for Micropositioners and Nanopositioners
,”
Appl. Mech. Rev.
0003-6900,
59
, pp.
324
334
.
You do not currently have access to this content.