Matrix methods for kinematic analysis of spatial linkages were extended to provide jerk of joint pair variables, individual points, and individual links. Simple expressions for axode geometry were also developed. The methods were tested on revolute-spherical-universal-revolute and revolute-cylindrical-cylindrical-cylindrical closed loop mechanisms.

1.
Norton
,
R. L.
, 2004,
Design of Machinery
,
3rd ed.
,
McGraw-Hill
,
Boston
, Chap. 7.
2.
Suh
,
C. H.
, and
Radcliffe
,
C. W.
, 1978,
Kinematics and Mechanisms Design
,
Wiley
,
New York
, Chap. 3.
3.
Flash
,
T.
, and
Hogan
,
N.
, 1985, “
The Coordination of Arm Movements: an Experimentally Confirmed Mathematical Model
,”
J. Neurosci.
0270-6474,
5
(
7
), pp.
1688
1703
.
4.
Chang
,
J. J.
,
Wu
,
T. I.
,
Wu
,
W. L.
, and
Su
,
F. C.
, 2005, “
Kinematical Measure for Spastic Reaching in Children With Cerebral Palsy
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
20
, pp.
381
388
.
5.
Macfarlane
,
S.
, and
Croft
,
E. A.
, 2003, “
Jerk-Bounded Manipulator Trajectory Planning: Design for Real-Time Applications
,”
IEEE Trans. Rob. Autom.
1042-296X,
19
(
1
), pp.
42
52
.
6.
Erkorkmaz
,
K.
, and
Altintas
,
Y.
, 2001, “
High Speed CNC System Design. Part I: Jerk Limited Trajectory Generation and Quintic Spline Interpolation
,”
Int. J. Mach. Tools Manuf.
0890-6955,
41
, pp.
1323
1345
.
7.
Gallardo-Alvarado
,
J.
, 2003, “
Jerk Distribution of a 6-3 Gough–Stewart Platform
,”
Proc. Inst. Mech. Eng., Part K: J. Multi-body Dynamics
,
217
, pp.
77
84
.
8.
Rico
,
J. M.
,
Gallardo
,
J.
, and
Duffy
,
J.
, 1999, “
Screw Theory and Higher Order Kinematic Analysis of Open Serial and Closed Chains
,”
Mech. Mach. Theory
0094-114X,
34
, pp.
559
586
.
9.
Gallardo-Alvarado
,
J.
, and
Rico-Martinez
,
J. M.
, 2001, “
Jerk Influence Coefficients, via Screw Theory, of Closed Chains
,”
Meccanica
0025-6455,
36
, pp.
213
228
.
10.
Urbinati
,
F.
, and
Pennestri
,
E.
, 1998, “
A Tool for Third Order Kinematic Analysis of Spatial Mechanisms
,”
Proceedings 25th ASME Biennial Mechanisms Conference
,
Atlanta, GA
, CD-ROM Paper DETC/MECH-5901.
11.
Haug
,
E. J.
, 1989,
Computer-Aided Kinematics and Dynamics of Mechanical Systems
,
Allyn and Bacon
,
Boston
, Chap. 9.
12.
Uicker
,
J. J.
,
Denavit
,
J.
, and
Hartenberg
,
R. S.
, 1964, “
An Iterative Method for the Displacement Analysis of Spatial Mechanisms
,”
ASME J. Appl. Mech.
0021-8936,
31
, pp.
309
314
.
13.
Denavit
,
J.
,
Hartenberg
,
R. S.
,
Razi
,
R.
, and
Uicker
,
J. J.
, 1965, “
Velocity, Acceleration and Static-Force Analyses of Spatial Linkages
,”
ASME J. Appl. Mech.
0021-8936,
32
, pp.
903
910
.
14.
Sommer
,
H. J.
, 1992, “
Determination of First and Second Order Instant Screw Parameters From Landmark Trajectories
,”
ASME J. Mech. Des.
1050-0472,
114
(
2
), pp.
274
282
.
15.
Bottema
,
O.
, and
Roth
,
B.
, 1979,
Theoretical Kinematics
,
North-Holland
,
Toronto
, Chap. 2, reprinted 1990,
Dover
,
New York
.
16.
Baker
,
J. E.
, 2005, “
The Curve of Striction of the Bennet Loop’s Fixed Axode
,”
ASME J. Mech. Des.
1050-0472,
127
(
4
), pp.
607
611
.
17.
2006, MATLAB, version 7.2.0.232 (R2006a), The MathWorks, Natick, MA.
You do not currently have access to this content.