At the beginning of gear transmission design, mainly simplified methods of gear strength analysis based on ISO or AGMA standards are used. However, they allow for calculation of approximate and sometimes biased stresses. Moreover, ISO standard is generally focused on using racks for gear manufacturing. A method proposed in this paper allows for computation of the parameters of critical section, strength coefficients YF, YS, and tooth root stress σF according to the procedure from ISO standard also in the case of machining gears with gear type tools. The proposed improvement of ISO standard leads to replacement of real gear tool with rack with substitute tip radius ρa0*. The developed method maintains basic assumptions and advantages of ISO standard, including its simplicity. Simultaneously, it allows for computing the maximum tooth root stresses σF: (i) very close to results of accurate geometric analysis and finite element analysis, and (ii) much closer, compared to conventional ISO procedure, to results obtained using AGMA standard.

1.
Hirth
,
M.
, 1974, “
Einfluß der Zahnfußausrundung auf Spannung und Festigkeit von Geradstirnrädern
,” dissertation, TU München, München.
2.
DIN 3990-3
, 1987, Tragfähigkeitsberechnung von Stirnrädern—Teil 3: Berechnung der Zahnfußtragfähigkeit.
3.
ISO 6336 Standard
, Calculation of Load Capacity of Spur and Helical Gears—Part 3: Calculation of Tooth Bending Strength.
4.
Kawalec
,
A.
, and
Wiktor
,
J.
, 1999, “
Analytical and Numerical Method of Determination of Spur Gear Tooth Profile Machined by Gear Tools
,”
Adv. Technol. Mach. Equip.
,
23
, pp.
5
28
.
5.
Kawalec
,
A.
, and
Wiktor
,
J.
, 2001, “
Form and Strength Properties of Spur Gear Tooth Root with Consideration of Technological Factors
,”
Adv. Technol. Mach. Equip.
,
25
, pp.
35
57
.
6.
Wiktor
,
J.
, 2004,
Analytical and Numerical Methods of Analysis of Geometric Parameters, Disturbances of Motion and Strength of Cylindrical Gear Transmissions
,
Publication Office of the Rzeszów University of Technology
,
Rzeszów
, in Polish.
7.
Kawalec
,
A.
, 2005,
Computer Aided Synthesis and Modelling of Modified Helical Gear Transmissions with Finite Element Analysis
,
Publication Office of the Rzeszów University of Technology
,
Rzeszów
.
8.
Kawalec
,
A.
,
Wiktor
,
J.
, and
Ceglarek
,
D.
, 2006, “
Comparative Analysis of Tooth Root Strength Using ISO and AGMA Standards in Spur and Helical Gears With FEM-based Verification
,”
ASME J. Mech. Des.
1050-0472,
128
, pp.
1141
1158
.
9.
Dooner
,
D. B.
, and
Seireg
,
A. A.
, 1995,
The Kinematic Geometry of Gearing: A Concurrent Engineering Approach
,
Wiley
,
New York
.
10.
Litvin
,
F. L.
, and
Fuentes
,
A.
, 2004,
Gear Geometry and Applied Theory
,
2nd ed.
,
Cambridge University Press
,
Cambridge
.
11.
Townsend
,
D. P.
, 1992,
Dudley’s Gear Handbook
,
McGraw-Hill, Inc.
,
New York
.
12.
Weck
,
M.
, 1992,
Moderne Leistungsgetriebe. Verzahnungsauslegung und Betriebsverhalten
,
Springer
,
Berlin
.
13.
Tsay
,
C.-B.
,
Liu
,
W.-Y.
, and
Chen
,
Y.-C.
, 2000, “
Spur Gear Generation by Shaper Cutters
,”
J. Mater. Process. Technol.
0924-0136,
104
, pp.
271
279
.
14.
Math
,
V. B.
, and
Chand
,
S.
, 2004, “
An Approach to the Determination of Spur Gear Tooth Root Fillet
,”
ASME J. Mech. Des.
1050-0472,
126
, pp.
336
340
.
15.
Pedrero
,
J. I.
,
Fuentes
,
A.
, and
Estrems
,
M.
, 2000, “
Approximate Method for the Determination of the Bending Strength Geometry Factor for External Spur and Helical Gear Teeth
,”
ASME J. Mech. Des.
1050-0472,
122
, pp.
331
336
.
16.
Guilbault
,
R.
,
Gosselin
,
C.
, and
Cloutier
,
L.
, 2005, “
Express Model for Load Sharing and Stress Analysis in Helical Gears
,”
ASME J. Mech. Des.
1050-0472,
127
, pp.
1161
1172
.
17.
Jaśkiewicz
,
Z.
, and
Wąsiewski
,
A.
, 1992,
Spur Gear Transmissions
,
WKiŁ
,
Warszawa
, Vol.
1
, in Polish.
18.
Niemann
,
G.
, and
Winter
,
H.
, 1985,
Maschinenelemente, Band II
,
Springer
,
Berlin
.
19.
Baud
,
S.
, and
Velex
,
P.
, 2002, “
Static and Dynamic Tooth Loading in Spur and Helical Geared Systems-Experiments and Model Validation
,”
ASME J. Mech. Des.
1050-0472,
124
, pp.
334
346
.
20.
Wang
,
M.-J.
, 2003, “
A New Photoelastic Investigation of the Dynamic Bending Stress of Spur Gears
,”
ASME J. Mech. Des.
1050-0472,
125
, pp.
365
372
.
21.
Sainsot
,
P.
,
Velex
,
P.
, and
Duverger
,
O.
, 2004, “
Contribution of Gear Body to Tooth Deflections — A New Bidimensional Analytical Formula
,”
ASME J. Mech. Des.
1050-0472,
126
, pp.
748
752
.
22.
Guilbault
,
R.
,
Gosselin
,
C.
, and
Cloutier
,
L.
, 2006, “
Helical Gears, Effects of Tooth Deviations and Tooth Modifications on Load Sharing and Fillet Stresses
,”
ASME J. Mech. Des.
1050-0472,
128
, pp.
444
456
.
23.
Guingand
,
M.
,
de Vaujany
,
J. P.
, and
Icard
,
Y.
, 2004, “
Fast Three-Dimensional Quasi-Static Analysis of Helical Gears Using the Finite Prism Method
,”
ASME J. Mech. Des.
1050-0472,
126
, pp.
1082
1088
.
24.
Li
,
S.
, 2002, “
Deformation and Bending Stress Analysis of a Three-Dimensional, Thin-Rimmed Gear
,”
ASME J. Mech. Des.
1050-0472,
124
, pp.
129
135
.
25.
Bathe
,
K. J.
, 1996,
Finite Element Procedures
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
26.
1998,
Handbook of Computational Solid Mechanics
,
M.
Kleiber
, ed.,
Springer
,
Berlin
.
27.
Li
,
C.-H.
,
Chiou
,
H.-S.
,
Hung
,
C.
,
Chang
,
Y.-Y.
, and
Yen
,
C.-C.
, 2002, “
Integration of Finite Element Analysis and Optimum Design on Gear Systems
,”
Finite Elem. Anal. Design
0168-874X,
38
, pp.
179
192
.
28.
Lewicki
,
D. G.
,
Handschuh
,
R. F.
,
Spievak
,
L. E.
,
Wawrzynek
,
P. A.
, and
Ingraffea
,
A. R.
, 2001, “
Consideration of Moving Tooth Load in Gear Crack Propagation Predictions
,”
ASME J. Mech. Des.
1050-0472,
123
, pp.
118
124
.
29.
Kramberger
,
J.
,
Šraml
,
M.
,
Glodež
,
S.
,
Flašker
,
J.
, and
Potrč
,
I.
, 2004, “
Computational Model for the Analysis of Bending Fatigue in Gears
,”
Comput. Struct.
0045-7949,
82
, pp.
2261
2269
.
30.
AGMA Information Sheet 908-B89
, Geometry Factors for Determining the Pitting Resistance and Bending Strength of Spur, Helical and Herringbone Gear Teeth.
31.
1993, ANSI∕AGMA 6002-B93 Standard, Design Guide for Vehicle Spur and Helical Gears.
32.
1995, ANSI∕AGMA 2101-C95, Metric Edition of ANSI∕AGMA 2001-C95. Fundamental Rating Factors and Calculation Methods for Involute Spur and Helical Gear Teeth.
33.
Mathews
,
J. H.
, 1987,
Numerical Methods for Mathematics, Science and Engineering
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
34.
2005,
ADINA Theory and Modeling Guide
,
ADINA R&D, Inc.
,
Watertown, MA
.
You do not currently have access to this content.