Prismatic cellular or honeycomb materials exhibit favorable properties for multifunctional applications such as ultralight load bearing combined with active cooling. Since these properties are strongly dependent on the underlying cellular structure, design methods are needed for tailoring cellular topologies with customized multifunctional properties. Topology optimization methods are available for synthesizing the form of a cellular structure—including the size, shape, and connectivity of cell walls and openings—rather than specifying these features a priori. To date, the application of these methods for cellular materials design has been limited primarily to elastic and thermoelastic properties, and limitations of classic topology optimization methods prevent a direct application to many other phenomena such as conjugate heat transfer with internal convection. In this paper, a practical, two-stage topology design approach is introduced for applications that require customized multifunctional properties. In the first stage, robust topology design methods are used to design flexible cellular topology with customized structural properties. Dimensional and topological flexibility is embodied in the form of robust ranges of cell wall dimensions and robust permutations of a nominal cellular topology. In the second design stage, the flexibility is used to improve the heat transfer characteristics of the design via addition/removal of cell walls and adjustment of cellular dimensions without degrading structural performance. The method is applied to design stiff, actively cooled prismatic cellular materials for the combustor liners of next-generation gas turbine engines.

1.
Hayes
,
A. M.
,
Wang
,
A.
,
Dempsey
,
B. M.
, and
McDowell
,
D. L.
, 2004, “
Mechanics of Linear Cellular Alloys
,”
Mech. Mater.
0167-6636,
36
(
8
), pp.
691
713
.
2.
Evans
,
A. G.
,
Hutchinson
,
J. W.
, and
Ashby
,
M. F.
, 1999, “
Multifunctionality of Cellular Metal Systems
,”
Prog. Mater. Sci.
0079-6425,
43
(
3
), pp.
171
221
.
3.
Lu
,
T. J.
, 1999, “
Heat Transfer Efficiency of Metal Honeycombs
,”
Int. J. Heat Mass Transfer
0017-9310,
42
(
11
), pp.
2031
2040
.
4.
Evans
,
A. G.
,
Hutchinson
,
J. W.
,
Fleck
,
N. A.
,
Ashby
,
M. F.
, and
Wadley
,
H. N. G.
, 2001, “
The Topological Design of Multifunctional Cellular Materials
,”
Prog. Mater. Sci.
0079-6425,
46
(
3–4
), pp.
309
327
.
5.
Beaman
,
J. J.
,
Barlow
,
J. W.
,
Bourell
,
D. L.
,
Crawford
,
R. H.
,
Marcus
,
H. L.
, and
McAlea
,
K. P.
, 1997,
Solid Freeform Fabrication: A New Direction in Manufacturing
,
Kluwer Academic
,
Boston
.
6.
Cochran
,
J. K.
,
Lee
,
K. J.
,
McDowell
,
D. L.
, and
Sanders
,
T. H.
, 2000, “
Low Density Monolithic Honeycombs by Thermal Chemical Processing
,”
Proceedings of the Fourth Conference on Aerospace Materials, Processes, and Environmental Technology
,
Huntsville, AL
.
7.
Seepersad
,
C. C.
,
Dempsey
,
B. M.
,
Allen
,
J. K.
,
Mistree
,
F.
, and
McDowell
,
D. L.
, 2004, “
Design of Multifunctional Honeycomb Materials
,”
AIAA J.
0001-1452,
42
(
5
), pp.
1025
1033
.
8.
Seepersad
,
C. C.
,
Kumar
,
R. S.
,
Allen
,
J. K.
,
Mistree
,
F.
, and
McDowell
,
D. L.
, 2005, “
Multifunctional Design of Prismatic Cellular Materials
,”
J. Comput.-Aided Mater. Des.
0928-1045,
11
(
2–3
), pp.
163
181
.
9.
Eschenauer
,
H. A.
, and
Olhoff
,
N.
, 2001, “
Topology Optimization of Continuum Structures: A Review
,”
Appl. Mech. Rev.
0003-6900,
54
(
4
), pp.
331
389
.
10.
Ohsaki
,
M.
, and
Swan
,
C. C.
, 2002, “
Topology and Geometry Optimization of Trusses and Frames
,”
Recent Advances in Optimal Structural Design
S. A.
Burns
, ed.,
American Society of Civil Engineers
,
Reston, VA
.
11.
Soto
,
C.
, 2001, “
Structural Topology Optimization: From Minimizing Compliance to Maximizing Energy Absorption
,”
Int. J. Veh. Des.
0143-3369,
25
(
1/2
), pp.
142
160
.
12.
Sigmund
,
O.
, 1994, “
Materials With Prescribed Constitutive Parameters: An Inverse Homogenization Problem
,”
Int. J. Solids Struct.
0020-7683,
31
(
17
), pp.
2313
2329
.
13.
Sigmund
,
O.
, 1995, “
Tailoring Materials With Prescribed Elastic Properties
,”
Mech. Mater.
0167-6636,
20
(
4
), pp.
351
368
.
14.
Sigmund
,
O.
, and
Torquato
,
S.
, 1997, “
Design of Materials With Extreme Thermal Expansion Using a Three-Phase Topology Optimization Method
,”
J. Mech. Phys. Solids
0022-5096,
45
(
6
), pp.
1037
1067
.
15.
Hyun
,
S.
, and
Torquato
,
S.
, 2002, “
Optimal and Manufacturable Two-Dimensional, Kagome-Like Cellular Solids
,”
J. Mater. Res.
0884-2914,
17
(
1
), pp.
137
144
.
16.
Li
,
Q.
,
Steven
,
G. P.
,
Xie
,
Y. M.
, and
Querin
,
O. M.
, 2004, “
Evolutionary Topology Optimization for Temperature Reduction of Heat Conducting Fields
,”
Int. J. Heat Mass Transfer
0017-9310,
47
(
23
), pp.
5071
5083
.
17.
Li
,
Q.
,
Steven
,
G. P.
, and
Querin
,
O. M.
, 2000, “
Structural Topology Design With Multiple Thermal Criteria
,”
Eng. Comput.
0264-4401,
17
(
6
), pp.
715
734
.
18.
Sigmund
,
O.
, 2001, “
Design of Multiphysics Actuators Using Topology Optimization—Part I: One-Material Structures
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
190
(
49–50
), pp.
6577
6604
.
19.
Sigmund
,
O.
,
Torquato
,
S.
, and
Aksay
,
I. A.
, 1998, “
On the Design of 1–3 Piezocomposites Using Topology Optimization
,”
J. Mater. Res.
0884-2914,
13
(
4
), pp.
1038
1048
.
20.
Sokolowski
,
J.
, and
Zochowski
,
A.
, 1999, “
On the Topological Derivative in Shape Optimization
,”
SIAM J. Control Optim.
0363-0129,
37
, pp.
1251
1272
.
21.
Eschenauer
,
H. A.
,
Kobelev
,
V. V.
, and
Schumacher
,
A.
, 1994, “
Bubble Method for Topology and Shape Optimization of Structures
,”
Struct. Multidiscip. Optim.
1615-147X,
8
, pp.
42
51
.
22.
Burger
,
M.
,
Hackl
,
B.
, and
Ring
,
W.
, 2004, “
Incorporating Topological Derivatives Into Level Set Methods
,”
J. Comput. Phys.
0021-9991,
194
, pp.
344
362
.
23.
Novotny
,
A. A.
,
Feijoo
,
R. A.
,
Taroco
,
E.
, and
Padra
,
C.
, 2003, “
Topological Sensitivity Analysis
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
192
, pp.
803
829
.
24.
Cea
,
J.
,
Garreau
,
S.
,
Guillaume
,
P.
, and
Masmoudi
,
M.
, 2000, “
The Shape and Topological Optimization Connection
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
188
(
4
), pp.
713
726
.
25.
Taguchi
,
G.
, 1986,
Introduction to Quality Engineering
,
Asian Productivity Organization, UNIPUB
,
White Plains, NY
.
26.
Phadke
,
M. S.
, 1989,
Quality Engineering Using Robust Design
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
27.
Chang
,
T. S.
, and
Ward
,
A. C.
, 1995, “
Conceptual Robustness in Simultaneous Engineering: A Formulation in Continuous Spaces
,”
Res. Eng. Des.
0934-9839,
7
(
2
), pp.
67
85
.
28.
Chang
,
T. S.
,
Ward
,
A. C.
,
Lee
,
J.
, and
Jacox
,
E. H.
, 1994, “
Conceptual Robustness in Simultaneous Engineering: An Extension of Taguchi’s Parameter Design
,”
Res. Eng. Des.
0934-9839,
6
, pp.
211
222
.
29.
Chen
,
W.
, and
Lewis
,
K.
, 1999, “
A Robust Design Approach for Achieving Flexibility in Multidisciplinary Design
,”
AIAA J.
0001-1452,
37
(
8
), pp.
982
989
.
30.
Kalsi
,
M.
,
Hacker
,
K.
, and
Lewis
,
K.
, 2001, “
A Comprehensive Robust Design Approach for Decision Trade-Offs in Complex Systems Design
,”
ASME J. Mech. Des.
1050-0472,
123
(
1
), pp.
1
10
.
31.
Diaz
,
A.
, and
Bendsoe
,
M. P.
, 1992, “
Shape Optimization of Structures for Multiple Loading Situations Using a Homogenization Method
,”
Struct. Optim.
0934-4373,
4
(
1
), pp.
17
22
.
32.
Diaz
,
A.
,
Lipton
,
R.
, and
Soto
,
C. A.
, 1995, “
A New Formulation of the Problem of Optimum Reinforcement of Reissner-Mindlin Plates
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
123
(
1–4
), pp.
121
139
.
33.
Maute
,
K.
, and
Frangopol
,
D. M.
, 2003, “
Reliability-Based Design of MEMS Mechanisms by Topology Optimization
,”
Comput. Struct.
0045-7949,
81
(
8–11
), pp.
813
824
.
34.
Thampan
,
C. K. P. V.
, and
Krishnamoorthy
,
C. S.
, 2001, “
System Reliability-Based Configuration Optimization of Trusses
,”
J. Struct. Eng.
0733-9445,
127
(
8
), pp.
947
956
.
35.
Bae
,
K.-R.
,
Wang
,
S.
, and
Choi
,
K. K.
, 2002, “
Reliability-Based Topology Optimization
,”
Ninth AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization
,
Atlanta, GA
, Paper No. AIAA-2002-5542.
36.
Ben-Tal
,
A.
, and
Nemirovski
,
A.
, 1997, “
Robust Truss Topology Design Via Semidefinite Programming
,”
SIAM J. Optim.
1052-6234,
7
(
4
), pp.
991
1016
.
37.
Cherkaev
,
A.
, and
Cherkaeva
,
E.
, 1999, “
Optimal Design for Uncertain Loading Conditions
,”
Homogenization
,
V.
Berdichevsky
,
V.
Jikov
, and
G.
Papanicolaou
, eds.,
World Scientific
,
Singapore
, pp.
193
213
.
38.
Kocvara
,
M.
,
Zowe
,
J.
, and
Nemirovski
,
A.
, 2000, “
Cascading—An Approach to Robust Material Optimization
,”
Comput. Struct.
0045-7949,
76
(
1–3
), pp.
431
442
.
39.
Sandgren
,
E.
, and
Cameron
,
T. M.
, 2002, “
Robust Design Optimization of Structures Through Consideration of Variation
,”
Comput. Struct.
0045-7949,
80
(
20–21
), pp.
1605
1613
.
40.
Seepersad
,
C. C.
,
Allen
,
J. K.
,
McDowell
,
D. L.
, and
Mistree
,
F.
, 2006, “
Robust Design of Cellular Materials with Topological and Dimensional Imperfections
,”
ASME J. Mech. Des.
1050-0472,
128
(
6
), pp.
1285
1297
.
41.
Seepersad
,
C. C.
,
Allen
,
J. K.
,
McDowell
,
D. L.
, and
Mistree
,
F.
, 2003, “
Robust Topological Design of Cellular Materials
,”
ASME Advances in Design Automation Conference
,
Chicago, IL
, Paper No. DETC2003/DAC-48772.
42.
Bailey
,
J. C.
,
Intile
,
J.
,
Fric
,
T F
,
Tolpadi
,
A. K.
,
Nirmalan
,
N. V.
, and
Bunker
,
R. S.
, 2002, “
Experimental and Numerical Study of Heat Transfer in a Gas Turbine Combustor Liner
,”
International Gas Turbine Conference and Exposition
,
Amsterdam, Netherlands
, ASME Paper No. GT-2002-30183.
43.
Dimiduk
,
D. M.
, and
Perepezko
,
J. H.
, 2003, “
Mo-Si-B Alloys: Developing a Revolutionary Turbine-Engine Material
,”
MRS Bull.
0883-7694,
28
(
9
), pp.
639
645
.
44.
Schneibel
,
J. H.
,
Kramer
,
M. J.
,
Unal
,
O.
, and
Wright
,
R. N.
, 2001, “
Processing and Mechanical Properties of a Molybdenum Silicide With the Composition Mo-12Si-8.5B (at.%)
,”
Intermetallics
0966-9795,
9
(
1
), pp.
25
31
.
45.
Kirsch
,
U.
, 1989, “
Optimal Topologies of Structures
,”
Appl. Mech. Rev.
0003-6900,
42
(
8
), pp.
223
239
.
46.
Topping
,
B. H. V.
, 1984, “
Shape Optimization of Skeletal Structures: A Review
,”
J. Struct. Eng.
0733-9445,
109
(
8
), pp.
1933
1951
.
47.
Dorn
,
W. S.
,
Gomory
,
R. E.
, and
Greenberg
,
H. J.
, 1964, “
Automatic Design of Optimal Structures
,”
J. Mec.
0021-7832,
3
, pp.
25
52
.
48.
Frecker
,
M. I.
,
Ananthasuresh
,
G. K.
,
Nishiwaki
,
S.
,
Kikuchi
,
N.
, and
Kota
,
S.
, 1997, “
Topological Synthesis of Compliant Mechanisms Using Multi-Criteria Optimization
,”
ASME J. Mech. Des.
1050-0472,
119
(
2
), pp.
238
245
.
49.
Pedersen
,
C. B. W.
, 2003, “
Topology Optimization Design of Crushed 2D-Frames for Desired Energy Absorption History
,”
Struct. Multidiscip. Optim.
1615-147X,
25
(
5–6
), pp.
368
382
.
50.
Reddy
,
J. N.
, 1993,
An Introduction to the Finite Element Method
,
2nd ed.
,
McGraw-Hill
,
Boston
.
51.
Mistree
,
F.
,
Hughes
,
O. F.
, and
Bras
,
B. A.
, 1993, “
The Compromise Decision Support Problem and the Adaptive Linear Programming Algorithm
,”
Structural Optimization: Status and Promise
,
M. P.
Kamat
, ed.,
AIAA
,
Washington, D.C.
, pp.
247
286
.
52.
Charnes
,
A.
, and
Cooper
,
W. W.
, 1961,
Management Models and Industrial Applications of Linear Programming
,
Wiley
,
New York
.
53.
Cook
,
R. D.
,
Malkus
,
D S.
, and
Plesha
,
M. E.
, 1989,
Concepts and Applications of Finite Element Analysis
,
3rd ed.
,
Wiley
,
New York
.
54.
Seepersad
,
C. C.
, 2004, “
A Robust Topological Preliminary Design Exploration Method With Materials Design Applications
,” Ph.D. thesis, G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA.
55.
Svanberg
,
K.
, 1987, “
The Method of Moving Asymptotes—A New Method for Structural Optimization
,”
Int. J. Numer. Methods Eng.
0029-5981,
24
(
2
), pp.
359
373
.
56.
Incropera
,
F. P.
, and
DeWitt
,
D. P.
, 1996,
Fundamentals of Heat and Mass Transfer
,
3rd ed.
,
Wiley
,
New York
.
57.
Hodge
,
B. K.
, 1999,
Analysis and Design of Energy Systems
,
Simon and Schuster
,
Upper Saddle River, NJ
.
You do not currently have access to this content.