This paper describes a method for improving commonality in a highly customized low volume product line whose members were originally developed one at a time to meet specific customer requirements. Rather than focusing on redesign of the entire product line, which can often be cost prohibitive, the method is part of a strategy to redesign a limited set of component parts that have the highest potential for cost savings. The method involves a four-step methodology: (1) determine an optimal component solution for each member artifact of an existing market segment grid, (2) test the feasibility of using each optimal component as a platform for the other artifacts, (3) formulate an optimization problem around the feasibility statistics whose solution is a product platform portfolio, and (4) solve the optimization problem for the platform portfolio that can span the existing market segment grid most cost effectively. The proposed method is applied to an example involving the redesign of actuator mounting yokes for an existing set of valves that are used in nuclear power plants. The methodology shows promise for determining a product platform mix that maximizes cost effectiveness yet meets performance requirements.

1.
Sanderson
,
S. W.
, and
Uzumeri
,
M.
, 1997,
Managing Product Families
,
Irwin
,
Chicago
.
2.
Meyer
,
M. H.
, 1997, “
Revitalize Your Product Lines Through Continuous Platform Renewal
,”
Res. Technol. Manag.
0895-6308,
40
(
2
), pp.
17
28
.
3.
Pessina
,
M. W.
, and
Renner
,
J. R.
, 1998, “
Mass Customization at Lutron Electronics-A Total Company Process
,”
Agility & Global Competition
,
2
(
2
), pp.
50
57
.
4.
Aboulafia
,
R.
, 2000, “
Airbus Pulls Closer to Boeing
,”
Aerosp. Am.
0740-722X,
38
(
4
), pp.
16
18
.
5.
Dahmus
,
J. B.
,
Gonzalez-Zugasti
,
J. P.
, and
Otto
,
K. N.
, 2000, “
Modular Product Architecture
,”
ASME Design Engineering Technical Conferences-Design Theory and Methodology Conference
,
Baltimore, MD
, ASME Paper No. DETC2000∕DTM-14565.
6.
Gonzalez-Zugasti
,
J. P.
, and
Otto
,
K. N.
, 2000, “
Modular Platform-Based Product Family Design
,”
ASME Design Engineering Technical Conferences-Design Automation Conference
,
Baltimore, MD
, ASME Paper No. DETC-2000∕DAC-14238.
7.
Martin
,
M. V.
, and
Ishii
,
K.
, 2002, “
Design for Variety: Developing Standardized and Modularized Product Platform Architectures
,”
Res. Eng. Des.
0934-9839,
13
(
4
), pp.
213
235
.
8.
Ulrich
,
K.
, 1995, “
The Role of Product Architecture in the Manufacturing Firm
,”
Res. Policy
0048-7333,
24
(
3
), pp.
419
440
.
9.
Zamirowksi
,
E. J.
, and
Otto
,
K. N.
, 1999, “
Identifying Product Portfolio Architecture Modularity Using Function and Variety Heuristics
,”
ASME Design Engineering Technical Conferences-Design Theory and Methodology Conference
,
Las Vegas, NV
, ASME Paper No. DETC99∕DTM-8760.
10.
Messac
,
A.
,
Martinez
,
M. P.
, and
Simpson
,
T. W.
, 2002, “
Effective Product Family Design Using Physical Programming
,”
Eng. Optimiz.
0305-215X,
34
(
3
), pp.
245
261
.
11.
Nayak
,
R. U.
,
Chen
,
W.
, and
Simpson
,
T. W.
, 2002, “
A Variation-Based Method for Product Family Design
,”
Eng. Optimiz.
0305-215X,
34
(
1
), pp.
65
81
.
12.
Simpson
,
T. W.
,
Seepersad
,
C. C.
, and
Mistree
,
F.
, 2001, “
Balancing Commonality and Performance Within the Concurrent Design of Multiple Products in a Product Family
,”
Concurr. Eng. Res. Appl.
1063-293X,
9
(
3
), pp.
177
190
.
13.
Dai
,
Z.
, and
Scott
,
M. J.
, 2006, “
Effective Product Family Design Using Preference Aggregation
,”
ASME J. Mech. Des.
1050-0472,
128
(
4
), pp.
659
667
.
14.
Fellini
,
R.
,
Kokkolaras
,
M.
,
Papalambros
,
P.
, and
Perez-Duarte
,
A.
, 2005, “
Platform Selection Under Performance Loss Constraints in Optimal Design of Product Families
,”
ASME J. Mech. Des.
1050-0472,
127
(
4
), pp.
524
535
.
15.
Seepersad
,
C. C.
,
Mistree
,
F.
, and
Allen
,
J. K.
, 2002, “
A Quantitative Approach for Designing Multiple Product Platforms for an Evolving Portfolio of Products
,”
ASME Design Engineering Technical Conferences-Design Automation Conference
,
Montreal, Canada
, ASME Paper No. DETC02∕DAC-34096.
16.
D’Souza
,
B. S.
, and
Simpson
,
T. W.
, 2002, “
A Genetic Algorithm Based Method for Product Family Design Optimization
,”
ASME 2002 Design Engineering Technical Conferences-Design Automation Conference
,
Montreal, Canada
, ASME Paper No. DETC02∕DAC-34106.
17.
Simpson
,
T. W.
,
Chen
,
W.
,
Allen
,
J. K.
, and
Mistree
,
F.
, 1997, “
Designing Ranged Sets of Top-Level Design Specifications for a Family of Aircraft: An Application of Design Capability Indicies
,”
SAE World Aviation Congress and Exposition
,
Anaheim, CA
, Paper No. AIAA
97
5513
.
18.
Nayak
,
R. U.
,
Chen
,
W.
, and
Simpson
,
T. W.
, 2000, “
A Variation-Based Method for Product Family Design
,”
ASME 2000 Design Engineering Technical Conferences-Design Automation Conference
, Baltamore, MD, ASME Paper No. DETC2000∕DAC-14264.
19.
de Weck
,
O. L.
,
Suh
,
E. S.
, and
Chang
,
D.
, 2003, “
Product Family and Platform Portfolio Optimization
,”
ASME Design Engineering Technical Conferences-Design Automation Conference
,
Chicago, IL
, ASME Paper. No. DETC2003∕DAC-48721.
20.
Fujita
,
K.
, and
Yoshida
,
H.
, 2001, “
Product Variety Optimization: Simultaneous Optimization of Module Combination and Module Attributes
,”
ASME Design Engineering Technical Conferences-Design Automation Conference
,
Pittsburgh, PA
, ASME Paper No. DETC2001∕DAC-21058.
21.
Fujita
,
K.
, 2002, “
Product Variety Optimization Under Modular Architecture
,”
Comput.-Aided Des.
0010-4485,
34
(
12
), pp.
953
965
.
22.
Fellini
,
M. K.
,
Papalambros
,
P. Y.
, and
Perez-Duarte
,
A.
, 2002, “
Platform Selection Under Performance Loss Constraints in Optimal Design of Product Families
,”
ASME 2002 Design Engineering Technical Conferences-Design Automation Conference
,
Montreal, Canada
, ASME Paper No. DETC2002∕DAC-34099.
23.
Georgiopoulos
,
P.
,
Fellini
,
M. K.
,
Sasena
,
M.
, and
Papalambros
,
P. Y.
, 2002, “
Optimal Design Decisions in Product Portfolio Valuation
,”
ASME Design Engineering Technical Conferences-Design Automation Conference
,
Montreal, Canada
, ASME Paper No. DETC2002∕DAC-34097.
24.
Hernandez
,
G.
,
Allen
,
J. K.
, and
Mistree
,
F.
, 2002, “
Design of Hierarchic Platforms for Customizable Products
,”
ASME Design Engineering Technical Conferences-Design Automation Conference
,
Montreal, Canada
, ASME Paper No. DETC2002∕DAC-34095.
25.
Mather
,
H.
, 1995, “
Product Variety—Friend or Foe?
,”
38th American Production and Inventory Control Society International Conference and Exhibition
,
Orlando, FL
, APICS, pp.
378
381
.
26.
Martin
,
M. V.
, and
Ishii
,
K.
, 1997, “
Design for Variety: Development of Complexity Indices and Design Charts
,”
ASME Design Engineering Technical Conferences-Design for Manufacturing Conference
, Sacramento, CA, ASME Paper No. DETC97∕DFM-4359.
27.
Nelson II
,
S. A.
,
Parkinson
,
M. B.
, and
Papalambros
,
P. Y.
, 2001, “
Multicriteria Optimization in Product Platform Design
,”
ASME J. Mech. Des.
1050-0472,
123
(
2
), pp.
199
204
.
28.
Fellini
,
R.
,
Kokkolaras
,
M.
, and
Papalambros
,
P.
, 2005, “
Commonality Decisions in Product Family Design
,”
Product Platform and Product Family Design: Methods and Applications
,
T. W.
Simpson
,
Z.
Siddique
, and
J.
Jiao
, eds.,
Springer
,
New York
, pp.
157
185
.
29.
Balabanov
,
V.
,
Giunta
,
A. A.
,
Golovidov
,
O.
,
Grossman
,
B.
,
Mason
,
W. H.
, and
Watson
,
L. T.
, 1999, “
Reasonable Design Space Approach to Response Surface Approximation
,”
J. Aircr.
0021-8669,
36
(
1
), pp.
308
315
.
30.
Knill
,
D. L.
,
Giunta
,
A. A.
,
Baker
,
C. A.
,
Grossman
,
B.
,
Mason
,
W. H.
,
Haftka
,
R. T.
, and
Watson
,
L. T.
, 1999, “
Response Surface Models Combining Linear and Euler Aerodynamics for Supersonic Transport Design
,”
J. Aircr.
0021-8669,
36
(
1
), pp.
75
86
.
31.
Simpson
,
T. W.
, 2005, “
Methods for Optimizing Product Platforms and Product Families: Overview and Classification
,”
Product Platform and Product Family Design: Methods and Applications
,
Simpson
,
T. W.
,
Z.
Siddique
, and
J.
Jiao
, eds.,
Springer
,
New York
, pp.
133
156
.
32.
Thevenot
,
H. J.
, and
Simpson
,
T. W.
, 2006, “
Commonality Indices for Product Family Design: A Detailed Comparison
,”
J. Eng. Design
0954-4828,
17
(
2
), pp.
99
119
.
33.
Khajavirad
,
A.
, and
Michalek
,
J. J.
, 2007, “
An Extension of the Commonality Index for Product Family Optimization
,”
ASME Design Engineering Technical Conferences-Design Automation Conference
,
ASME
,
Las Vegas, NV
, Paper No. DETC2006-DAC35605.
34.
Farrell
,
R. S.
, and
Simpson
,
T. W.
, 2003, “
Product Platform Design to Improve Commonality in Custom Products
,”
J. Intell. Manuf.
0956-5515,
14
(
6
), pp.
541
556
.
35.
Simpson
,
T. W.
,
Maier
,
J. R. A.
, and
Mistree
,
F.
, 2001, “
Product Platform Design: Method and Application
,”
Res. Eng. Des.
0934-9839,
13
(
1
), pp.
2
22
.
36.
Farrell
,
R. S.
,
Simpson
,
T. W.
,
Stump
,
G.
, and
Park
,
J.
, 2007, “
Prototype Implementation of a Virtual Product Family Through a Web-Based Custom Product Specification System
,”
International Journal of Mass Customization
,
2
(
1∕2
), pp.
161
178
.
37.
Belegundu
,
A. D.
, and
Chandrupatla
,
T. R.
, 1999,
Optimization Concepts and Applications in Engineering
,
Prentice-Hall
,
Upper Saddle River, NJ
.
You do not currently have access to this content.