Synthesis of hierarchical materials and products is an emerging systems design paradigm, which includes multiscale (quantum to continuum level) material simulation and product analysis models, uncertainty in the models, and the propagation of this uncertainty through the model chain. In order to support integrated multiscale materials and product design under uncertainty, we propose an inductive design exploration method (IDEM) in this paper. In IDEM, feasible ranged sets of specifications are found in a step-by-step, top-down (inductive) manner. In this method, a designer identifies feasible ranges for the interconnecting variables between the final two models in a model chain. Once feasible ranges of interconnecting variables between these two models are found, then, using this information, feasible ranges of interconnecting variables between the next to the last model and the model immediately preceding it are found. This process is continued until feasible ranged values for the input variables for the first model in the model chain are found. In IDEM, ranged sets of design specifications, instead of an optimal point solution, are identified for each segment of a multilevel design process. Hence, computer intensive calculations can be easily parallelized since the process of uncertainty analysis is decoupled from the design exploration process in IDEM. The method is demonstrated with the example of designing multifunctional energetic structural materials based on a chain of microscale and continuum level simulation models.

1.
Olson
,
G. B.
, 1997, “
Computational Design of Hierarchically Structured Materials
,”
Science
0036-8075,
277
(
5330
), pp.
1237
1242
.
2.
Belytschko
,
T.
,
Fish
,
J.
,
Hughes
,
T. R. J.
, and
Oden
,
T.
, 2004,
Simulation Based Engineering Science: A Report on a Workshop Held Under the Auspices of the National Science Foundation
.
3.
Taguchi
,
G.
, 1993,
Taguchi on Robust Technology Development: Bringing Quality Engineering Upstream
,
ASME
,
New York
.
4.
Simon
,
H. A.
, 1982,
The Sciences of the Artificial
,
The MIT Press
,
Cambridge
.
5.
Du
,
X.
, and
Chen
,
W.
, 2002, “
Efficient Uncertainty Analysis Methods for Multidisciplinary Robust Design
,”
AIAA J.
0001-1452,
40
(
3
), pp.
545
552
.
6.
Choi
,
H.-J.
,
Austin
,
R.
,
Allen
,
J. K.
,
McDowell
,
D. L.
,
Mistree
,
F.
, and
Benson
,
D. J.
, 2005, “
An Approach for Robust Design of Reactive Powder Metal Mixtures Based on Non-Deterministic Micro-Scale Shock Simulation
,”
J. Comput.-Aided Mater. Des.
0928-1045,
12
(
1
), pp.
57
85
.
7.
Isukapalli
,
S. S.
,
Roy
,
A.
, and
Georgopoulos
,
P. G.
, 1998, “
Stochastic Response Surface Methods (SRSMs) for Uncertainty Propagation: Application to Environmental and Biological Systems
,”
Risk Anal.
0272-4332,
18
(
3
), pp.
351
363
.
8.
Chen
,
W.
,
Allen
,
J. K.
,
Tsui
,
K.-L.
, and
Mistree
,
F.
, 1996, “
A Procedure for Robust Design: Minimizing Variations Caused by Noise Factors and Control Factors
,”
ASME J. Mech. Des.
1050-0472,
118
, pp.
478
485
.
9.
Parkinson
,
A.
,
Sorensen
,
C.
, and
Pourhassan
,
N.
, 1993, “
General Approach for Robust Optimal Design
,”
ASME J. Mech. Des.
1050-0472,
115
(
1
), pp.
74
80
.
10.
Sundaresan
,
S.
,
Ishii
,
K.
, and
Houser
,
D. R.
, 1995, “
Robust Optimization Procedure With Variations on Design Variables and Constraints
,”
Eng. Optimiz.
0305-215X,
24
(
2
), pp.
101
109
.
11.
Schmit
,
L. A.
, and
Mehrinfar
,
M.
, 1982, “
Multilevel Optimum Design of Structures With Fiber-Composite Stiffened Panel Components
,”
AIAA J.
0001-1452,
20
(
1
), pp.
138
147
.
12.
Sobieszczanski-Sobieski
,
J.
,
James
,
B. B.
, and
Riley
,
M. F.
, 1987, “
Structural Sizing by Generalized Multilevel Optimization
,”
AIAA J.
0001-1452,
25
(
1
), pp.
139
145
.
13.
Ford
,
J. M.
, and
Bloebaum
,
C. L.
, 1993, “
Decomposition Method for Concurrent Design of Mixed Discrete/Continuous Systems
,”
Advances in Design Automation
,
Albuquerque, NM
, Sept. 19–22, Vol.
DE-65-1
, pp.
477
486
.
14.
Wujek
,
B. A.
,
Renaud
,
J. E.
,
Batill
,
S. M.
, and
Brockman
,
J. B.
, 1996, “
Concurrent Subspace Optimization Using Design Variable Sharing in a Distributed Computing Environment
,”
Concurr. Eng. Res. Appl.
1063-293X,
4
(
4
), pp.
361
377
.
15.
Sobieszczanski-Sobieski
,
J.
, and
Kodiyalam
,
S.
, 2001, “
BLISS/S: A New Method for Two-Level Structural Optimization
,”
Struct. Multidiscip. Optim.
1615-147X,
21
(
1
), pp.
1
13
.
16.
Gu
,
X.
,
Renaud
,
J. E.
,
Batill
,
S. M.
,
Brach
,
R. M.
, and
Budhiraja
,
A. S.
, 2000, “
Worst Case Propagated Uncertainty of Multidisciplinary Systems in Robust Design Optimization
,”
Struct. Multidiscip. Optim.
1615-147X,
20
(
3
), pp.
190
213
.
17.
Liu
,
H.
,
Chen
,
W.
,
Kokkolaras
,
M.
,
Papalambros
,
P. Y.
, and
Kim
,
H. M.
, 2006, “
Probabilistic Analytical Target Cascading: A Moment Matching Formulation for Multilevel Optimization Under Uncertainty
,”
ASME J. Mech. Des.
1050-0472,
128
(
4
), pp.
991
1000
.
18.
Kim
,
H. M.
,
Michelena
,
N. F.
,
Papalambros
,
P. Y.
, and
Tao
,
J.
, 2003, “
Target Cascading in Optimal System Design
,”
ASME J. Mech. Des.
1050-0472,
125
(
3
), pp.
474
480
.
19.
Kim
,
H. M.
,
Rideout
,
D. G.
,
Papalambros
,
P. Y.
, and
Stein
,
J. L.
, 2003, “
Analytical Target Cascading in Automotive Vehicle Design
,”
ASME J. Mech. Des.
1050-0472,
125
(
3
), pp.
481
489
.
20.
Hoffman
,
J. D.
, 1992,
Numerical Methods for Engineers and Scientists
,
McGraw-Hill
,
New York
.
21.
Austin
,
R.
,
McDowell
,
D. L.
, and
Benson
,
D. J.
, 2005, “
Numerical Simulation of Shock Wave Propagation in Spatially-Resolved Reactive Particle Systems
,”
Modell. Simul. Mater. Sci. Eng.
0965-0393,
14
, pp.
537
561
.
22.
Austin
,
R. A.
, 2005, “
Numerical Simulation of the Shock Compaction of Microscale Reactive Particle Systems
,” MS thesis, The GW Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta.
23.
Benson
,
D. J.
, 1995, “
A Multi-Material Eulerian Formulation for the Efficient Solution of Impact and Penetration Problems
,”
Comput. Mech.
0178-7675,
15
, pp.
558
571
.
24.
Lu
,
X.
,
Narayanan
,
V.
, and
Hanagud
,
S.
, 2003, “
Shock Induced Chemical Reactions in Energetic Structural Materials
,”
13th American Physical Society Topical Conference on Shock Compression of Condensed Matter
,
Portland, OR
,
American Institute of Physics, Conference Proceedings, Jul. 28, 2006
, Vol.
845
, pp.
491
494
.
25.
Merzhanov
,
A. G.
, 1966, “
On Critical Conditions for Thermal Explosion of a Hot Spot
,”
Combust. Flame
0010-2180,
10
, pp.
341
348
.
This content is only available via PDF.
You do not currently have access to this content.