The high computational cost of population based optimization methods, such as multi-objective genetic algorithms (MOGAs), has been preventing applications of these methods to realistic engineering design problems. The main challenge is to devise methods that can significantly reduce the number of simulation (objective∕constraint functions) calls. We present a new multi-objective design optimization approach in which the Kriging-based metamodeling is embedded within a MOGA. The proposed approach is called Kriging assisted MOGA, or K-MOGA. The key difference between K-MOGA and a conventional MOGA is that in K-MOGA some of the design points are evaluated on-line using Kriging metamodeling instead of the actual simulation model. The decision as to whether the simulation or its Kriging metamodel should be used for evaluating a design point is based on a simple and objective criterion. It is determined whether by using the objective∕constraint functions’ Kriging metamodels for a design point, its “domination status” in the current generation can be changed. Seven numerical and engineering examples with different degrees of difficulty are used to illustrate applicability of the proposed K-MOGA. The results show that on the average K-MOGA converges to the Pareto frontier with an approximately 50% fewer number of simulation calls compared to a conventional MOGA.

1.
Deb
,
K.
, 2001,
Multiobjective Optimization Using Evolutionary Algorithms
,
Wiley
,
New York
.
2.
Farina
,
M.
, 2001, “
A Minimal Cost Hybrid Strategy for Pareto Optimal Front Approximation
,” Evolutionary Optimization, an international journal on the internet,
3
(
1
), pp.
41
52
(available online at www.jeo.org).
3.
Farina
,
M.
, 2002, “
A Neural Network Based Generalized Response Surface Multiobjective Evolutionary Algorithm
,”
Proceedings of Congress on Evolutionary Computation
,
IEEE
,
New York
, pp.
956
961
.
4.
Papadrakakis
,
M.
,
Lagaros
,
N.
, and
Tsompanakis
,
Y.
, 1999, “
Optimization of Large-Scale 3D Trusses Using Evolution Strategies and Neural Networks
,”
Int. J. Space Struct.
0956-0599,
14
(
3
), pp.
211
223
.
5.
Hong
,
Y.-S.
,
Lee
,
H.
, and
Tahk
,
M.-J.
, 2003, “
Acceleration of the Convergence Speed of Evolutionary Algorithms Using Multilayer Neural Networks
,”
Eng. Optimiz.
0305-215X,
35
(
1
), pp.
91
102
.
6.
Lian
,
Y.
, and
Liou
,
M.
, 2004, “
Multiobjective Optimization Using Coupled Response Surface Model and Evolutionary Algorithm
,”
Proceedings of the Tenth AIAA∕ISSMO Multidisciplinary Analysis and Optimization Conference
,
Albany, NY
, Aug. 30–Sept. 1, AIAA-2004-4323.
7.
Chung
,
H.
, and
Alonso
,
J.
, 2004, “
Multiobjective Optimization Using Approximation Model-Based Genetic Algorithms
,”
Proceedings of the Tenth AIAA∕ISSMO Multidisciplinary Analysis and Optimization Conference
,
Albany, NY
, Aug. 30–Sept. 1, AIAA-2004-432.
8.
Fang
,
H.
,
Rais-Rohani
,
M.
, and
Horstemeyer
,
M.
, 2004, “
Multiobjective Crashworthiness Optimization With Radial Basis Functions
,”
Proceedings of the Tenth AIAA∕ISSMO Multidisciplinary Analysis and Optimization Conference
,
Albany, NY
, Aug. 30–Sept. 1, AIAA-2004-4487.
9.
Chen
,
J.-H.
,
Goldberg
,
D. E.
,
Ho
,
S.-Y.
, and
Sastry
,
K.
, 2002, “
Fitness Inheritance in Multi-Objective Optimization
,”
Proceedings of the Genetic and Evolutionary Computation Conference
,
New York
, July 9–13,
Morgan Kaufmann
,
New York
.
10.
Smith
,
R.
,
Dike
,
B.
, and
Stegmann
,
S.
, 1995, “
Fitness Inheritance in Genetic Algorithms
,”
Proceedings of the ACM Symposiums on Applied Computing
,
ACM
,
Nashville, TN
, February 26–28, pp.
345
350
.
11.
Jin
,
Y.
,
Olhofer
,
M.
, and
Sendhoff
,
B.
, 2001, “
Managing Approximate Models in Evolutionary Aerodynamic Design Optimization
,”
Proceedings of IEEE Congress on Evolutionary Computation
, Vol.
1
, pp.
592
599
.
12.
Jin
,
Y.
,
Olhofer
,
M.
, and
Sendhoff
,
B.
, 2002, “
A Framework for Evolutionary Optimization With Approximate Fitness Functions
,”
IEEE Trans. Evol. Comput.
1089-778X,
6
(
5
), pp.
48
494
.
13.
Nain
,
P. K. S.
, and
Deb
,
K.
, 2003, “
Computationally Effective Search and Optimization Procedure Using Coarse to Fine Approximations
,”
Proceedings of the Congress on Evolutionary Computation (CEC-2003)
,
Canberra, Australia
, pp.
2081
2088
.
14.
Nair
,
P. B.
, and
Keane
,
A. J.
, 1998, “
Combining Approximation Concepts With Genetic Algorithm-based Structural Optimization Procedures
,”
AIAA∕ASME∕ASCE∕AHS∕ASC Structures, Structural Dynamics, and Materials Conference and Exhibit, 39th, and AIAA∕ASME∕AHS Adaptive Structures Forum
,
Long Beach, CA
, Apr. 20–23, Collection of Technical Papers, Pt. 2, A98-25092 06-39, AIAA-1998-1912.
15.
Oduguwa
,
V.
, and
Roy
,
R.
, 2002, “
Multi-Objective Optimization of Rolling Rod Product Design Using Meta-Modeling Approach
,”
Proceedings of the Genetic and Evolutionary Computation Conference
,
New York
, July 9–13,
Morgan Kaufmann
,
New York
, pp.
1164
1171
.
16.
Jin
,
Y.
, 2005, “
A Comprehensive Survey of Fitness Approximation in Evolutionary Computation
,”
Soft Comput.
1432-7643,
9
(
1
), pp.
3
12
.
17.
Wang
,
G. G.
, and
Shan
,
S.
, 2007, “
Review of Metamodeling Techniques in Support of Engineering Design Optimization
,”
ASME J. Mech. Des.
1050-0472,
129
(
4
), pp.
370
380
.
18.
Simpson
,
T. W.
,
Peplinski
,
J.
,
Koch
,
P. N.
, and
Allen
,
J. K.
, 2001, “
Metamodels for Computer-based Engineering Design: Survey and Recommendations
,”
Eng. Comput.
0177-0667,
17
(
2
), pp.
129
150
.
19.
Simpson
,
T. W.
,
Booker
,
A. J.
,
Ghosh
,
D.
,
Giunta
,
A. A.
,
Koch
,
P. N.
, and
Yang
,
R.-J.
, 2004, “
Approximation Methods in Multidisciplinary Analysis and Optimization: A Panel Discussion
,”
Struct. Multidiscip. Optim.
1615-147X,
27
, pp.
302
313
.
20.
Wilson
,
B.
,
Cappelleri
,
D.
,
Frecker
,
M.
, and
Simpson
,
T. W.
, 2001, “
Efficient Pareto Frontier Exploration Using Surrogate Approximations
,”
Optim. Eng.
1389-4420,
2
, pp.
31
50
.
21.
Koch
,
P. N.
,
Wujek
,
B. A.
,
Golovidov
,
O.
, and
Simpson
,
T. W.
, 2002, “
Facilitating Probabilistic Multidisciplinary Design Optimization Using Kriging Approximation Models
,”
Proceedings of the Ninth AIAA∕ISSMO Symposium on Multidisciplinary Analysis and Optimization
,
Atlanta, GA
, Sept. 4–6, AIAA 2002-5415.
22.
Sacks
,
J.
,
Welch
,
W. J.
,
Mitchell
,
T. J.
, and
Wynn
,
H. P.
, 1989, “
Design and Analysis of Computer Experiments
,”
Stat. Sci.
0883-4237,
4
(
4
), pp.
409
435
.
23.
Martin
,
J.
, and
Simpson
,
T. W.
, 2006, “
A Methodology to Manage System-level Uncertainty During Conceptual Design
,”
ASME J. Mech. Des.
1050-0472,
128
(
4
), pp.
959
968
.
24.
Sasena
,
M. J.
,
Parkinson
,
M.
,
Reed
,
M. P.
,
Papalambros
,
P. Y.
, and
Goovaerts
,
P.
, 2005, “
Improving an Ergonomics Testing Procedure via Approximation-Based Adaptive Experimental Design
,”
ASME J. Mech. Des.
1050-0472,
127
(
5
), pp.
1006
1013
.
25.
Albada
,
S. J.
, and
Robinson
,
P. A.
, 2007, “
Transformation of Arbitrary Distributions to the Normal Distribution With Application to EEG Test-Retest Reliability
,”
J. Neurosci. Methods
0165-0270,
161
(
2
), pp.
205
211
.
26.
Gano
,
S. E.
,
Renaud
,
J. E.
,
Martin
,
J. D.
, and
Simpson
,
T. W.
, 2006, “
Update Strategies for Kriging Models for Using in Variable Fidelity Optimization
,”
Struct. Multidiscip. Optim.
1615-147X,
32
(
4
), pp.
287
298
.
27.
Narayanan
,
S.
, and
Azarm
,
S.
, 1999, “
On Improving Multiobjective Genetic Algorithms for Design Optimization
,”
Struct. Optim.
0934-4373,
18
, pp.
146
155
.
28.
Kurapati
,
A.
,
Azarm
,
S.
, and
Wu
,
J.
, 2002, “
Constraint Handling Improvements for Multi-Objective Genetic Algorithms
,”
Struct. Multidiscip. Optim.
1615-147X,
23
(
3
), pp.
204
213
.
29.
Wu
,
J.
, and
Azarm
,
S.
, 2001, “
Metrics for Quality Assessment of a Multiobjective Design Optimzation Solution Set
,”
ASME J. Mech. Des.
1050-0472,
123
(
1
), pp.
18
25
.
30.
Rolander
,
N.
,
Rambo
,
J.
,
Joshi
,
Y.
, and
Mistree
,
F.
, 2005, “
Towards Sustainable Design of Data Centers: Addressing the Lifecycle Mismatch Problem
,”
Proceedings of IPACK05 International Electronic Packaging Technical Conference and Exhibition
,
San Francisco, CA
, Jul.
17
22
.
31.
Li
,
G.
,
Li
,
M.
,
Azarm
,
S.
,
Rambo
,
J.
, and
Joshi
,
Y.
, 2007, “
Optimizing Thermal Design of Data Center Cabinets with A New Multi-Objective Genetic Algorithm
,”
Distributed and Parallel Databases
,
21
(
2–3
), pp.
167
192
.
You do not currently have access to this content.