Kriging is a useful method for developing metamodels for product design optimization. The most popular kriging method, known as ordinary kriging, uses a constant mean in the model. In this article, a modified kriging method is proposed, which has an unknown mean model. Therefore, it is called blind kriging. The unknown mean model is identified from experimental data using a Bayesian variable selection technique. Many examples are presented, which show remarkable improvement in prediction using blind kriging over ordinary kriging. Moreover, a blind kriging predictor is easier to interpret and seems to be more robust against mis-specification in the correlation parameters.
Issue Section:
Design Theory and Methodology
1.
Fang
, K. T.
, Li
, R.
, and Sudjianto
, A.
, 2006, Design and Modeling for Computer Experiments
, CRC
, New York
.2.
Sacks
, J.
, Welch
, W. J.
, Mitchell
, T. J.
, and Wynn
, H. P.
, 1989, “Design and Analysis of Computer Experiments
,” Stat. Sci.
0883-4237, 4
, pp. 409
–423
.3.
Santner
, T. J.
, Williams
, B. J.
, and Notz
, W. I.
, 2003, The Design and Analysis of Computer Experiments
, Springer
, New York
.4.
Jin
, R.
, Chen
, W.
, and Simpson
, T.
, 2001, “Comparative Studies of Metamodeling Techniques Under Multiple Modeling Criteria
,” Struct. Multidiscip. Optim.
1615-147X, 23
, pp. 1
–13
.5.
Pacheco
, J. E.
, Amon
, C. H.
, and Finger
, S.
, 2003, “Bayesian Surrogates Applied to Conceptual Stages of the Engineering Design Process
,” ASME J. Mech. Des.
1050-0472, 125
, pp. 664
–672
.6.
Cappelleri
, D. J.
, Frecker
, M. I.
, Simpson
, T. W.
, and Snyder
, A.
, 2002, “Design of a PZT Bimorph Actuator Using a Metamodel-Based Approach
,” ASME J. Mech. Des.
1050-0472, 124
, pp. 354
–357
.7.
Sasena
, M. J.
, Parkinson
, M.
, Reed
, M. P.
, Paplambros
, P. Y.
, and Goovaerts
, P.
, 2005, “Improving an Ergonomics Testing Procedure Via Approximation-Based Adaptive Experimental Design
,” ASME J. Mech. Des.
1050-0472, 127
, pp. 1006
–1013
.8.
Yang
, R. J.
, Wang
, N.
, Tho
, C. H.
, Bobineau
, J. P.
, and Wang
, B. P.
, 2005, “Metamodeling Development for Vehicle Frontal Impact Simulation
,” ASME J. Mech. Des.
1050-0472, 127
, pp. 1014
–1020
.9.
Apley
, D. W.
, Lin
, J. L.
, and Chen
, W.
, 2006, “Understanding the Effects of Model Uncertainty in Robust Design With Computer Experiments
,” ASME J. Mech. Des.
1050-0472, 128
, pp. 945
–958
.10.
Martin
, J. D.
, and Simpson
, T. W.
, 2006, “A Methodology to Manage System-Level Uncertainty During Conceptual Design
,” ASME J. Mech. Des.
1050-0472, 128
, pp. 959
–968
.11.
Wackernagel
, H.
, 2002, Multivariate Geostatistics
, Springer
, New York
.12.
Currin
, C.
, Mitchell
, T. J.
, Morris
, M. D.
, and Ylvisaker
, D.
, 1991, “Bayesian Prediction of Deterministic Functions, With Applications to the Design and Analysis of Computer Experiments
,” J. Am. Stat. Assoc.
0162-1459, 86
, pp. 953
–963
.13.
Welch
, W. J.
, Buck
, R. J.
, Sacks
, J.
, Wynn
, H. P.
, Mitchell
, T. J.
, and Morris
, M. D.
, 1992, “Screening, Predicting, and Computer Experiments
,” Technometrics
0040-1706, 34
, pp. 15
–25
.14.
Martin
, J. D.
, and Simpson
, T. W.
, 2005, “On the Use of Kriging Models to Approximate Deterministic Computer Models
,” AIAA J.
0001-1452, 43
, pp. 853
–863
.15.
16.
Miller
, A.
, 2002, Subset Selection in Regression
, CRC
, New York
.17.
George
, E. I.
, and McCulloch
, R. E.
, 1993, “Variable Selection Via Gibbs Sampling
,” J. Am. Stat. Assoc.
0162-1459, 88
, pp. 881
–889
.18.
Breiman
, L.
, 1995, “Better Subset Regression Using the Nonnegative Garrote
,” Technometrics
0040-1706, 37
, pp. 373
–384
.19.
Tibshirani
, R.
, 1996, “Regression Shrinkage and Selection Via the Lasso
,” J. R. Stat. Soc. Ser. B (Methodol.)
0035-9246, 58
, pp. 267
–288
.20.
Efron
, B.
, Johnstone
, I.
, Hastie
, T.
, and Tibshirani
, R.
, 2004, “Least Angle Regression
,” Ann. Stat.
0090-5364, 32
, pp. 407
–499
.21.
Hamada
, M.
, and Wu
, C. F. J.
, 1992, “Analysis of Designed Experiments With Complex Aliasing
,” J. Quality Technol.
0022-4065, 24
, pp. 130
–137
.22.
Chipman
, H.
, Hamada
, M.
, and Wu
, C. F. J.
, 1997, “A Bayesian Variable Selection Approach for Analyzing Designed Experiments With Complex Aliasing
,” Technometrics
0040-1706, 39
, pp. 372
–381
.23.
Joseph
, V. R.
, 2006, “A Bayesian Approach to the Design and Analysis of Fractionated Experiments
,” Technometrics
0040-1706, 48
, pp. 219
–229
.24.
Joseph
, V. R.
, and Delaney
, J. D.
, 2007, “Functionally Induced Priors for the Analysis of Experiments
,” Technometrics
0040-1706, 49
, pp. 1
–11
.25.
Wu
, C. F. J.
, and Hamada
, M.
, 2000, Experiments: Planning, Analysis, and Parameter Design Optimization
, Wiley
, New York
.26.
Chen
, W.
, Jin
, R.
, and Sudjianto
, A.
, 2005, “Analytical Variance-Based Global Sensitivity Analysis in Simulation-Based Design Under Uncertainty
,” ASME J. Mech. Des.
1050-0472, 127
, pp. 875
–886
.27.
Hoffman
, R. M.
, Sudjianto
, A.
, Du
, X.
, and Stout
, J.
, 2003, “Robust Piston Design and Optimization Using Piston Secondary Motion Analysis
,” SAE Transactions, SAE Paper No. 2003-01-0148.28.
Li
, R.
, and Sudjianto
, A.
, 2005, “Analysis of Computer Experiments Using Penalized Likelihood in Gaussian Kriging Models
,” Technometrics
0040-1706, 47
, pp. 111
–120
.29.
Qian
, Z.
, Seepersad
, C. C.
, Joseph
, V. R.
, Allen
, J. K.
, and Wu
, C. F. J.
, 2006, “Building Surrogate Models Based on Detailed and Approximate Simulations
,” ASME J. Mech. Des.
1050-0472, 128
, pp. 668
–677
.30.
Sacks
, J.
, Schiller
, S. B.
, and Welch
, W. J.
, 1989, “Design of Computer Experiments
,” Technometrics
0040-1706, 31
, pp. 41
–47
.31.
Morris
, M. D.
, Mitchell
, T. J.
, and Ylvisaker
, D.
, 1993, “Bayesian Design and Analysis of Computer Experiments: Use of Derivatives in Surface Prediction
,” Technometrics
0040-1706, 35
, pp. 243
–255
.Copyright © 2008
by American Society of Mechanical Engineers
You do not currently have access to this content.