A moving linkage exerts fluctuating forces and moments on its supporting frame. One strategy to suppress the resulting frame vibration is to reduce the exciting forces and moments by adding counterweights to the linkage links. This paper develops a generic methodology to design such counterweights for planar linkages, based on formulating counterweight design as a second-order cone program. Second-order cone programs are convex, which implies that these nonlinear optimization problems have a global optimum that is guaranteed to be found in a numerically efficient manner. Two optimization criteria are considered: the frame vibration itself and the dynamic force transmitted to the machine floor. While the methodology is valid regardless of the complexity of the considered linkage, it is developed here for a literature benchmark consisting of a crank-rocker four-bar linkage supported by a rigid, elastically mounted frame with three degrees of freedom. For this particular benchmark, the second-order cone program slightly improves the previously known optimum. Moreover, numerical comparison with current state-of-the-art algorithms for nonlinear optimization shows that our approach results in a substantial reduction of the required computational time.

1.
Lowen
,
G. G.
,
Tepper
,
F. R.
, and
Berkof
,
R. S.
, 1983, “
Balancing of Linkages-an Update
,”
Mech. Mach. Theory
0094-114X,
18
(
3
), pp.
213
220
.
2.
Arakelian
,
V. H.
, and
Smith
,
M. R.
, 2005, “
Shaking Force and Shaking Moment Balancing of Mechanisms: A Historical Review With New Examples
,”
ASME J. Mech. Des.
1050-0472,
127
, pp.
334
339
.
3.
Martin
,
G. H.
, 1982,
Kinematics and Dynamics of Machines
,
2nd ed.
,
McGraw-Hill
,
New York
.
4.
Berkof
,
R. S.
, 1973, “
Complete Force and Moment Balancing of Inline Four-Bar Linkages
,”
Mech. Mach. Theory
0094-114X,
8
, pp.
397
410
.
5.
Gosselin
,
C. M.
,
Vollmer
,
F.
,
Côté
,
G.
, and
Wu
,
Y.
, 2004, “
Synthesis and Design of Reactionless Three-Degree-of-Freedom Parallel Mechanisms
,”
IEEE Trans. Rob. Autom.
1042-296X,
20
(
2
), pp.
191
199
.
6.
Fattah
,
A.
, and
Agrawal
,
S. K.
, 2006, “
On the Design of Reactionless 3-dof Plannar Parallel Mechanisms
,”
Mech. Mach. Theory
0094-114X,
41
, pp.
70
82
.
7.
Lowen
,
G. G.
, and
Berkof
,
R. S.
, 1971, “
Determination of Force-Balanced Four-Bar Linkages With Optimum Shaking Moment Characteristics
,”
ASME J. Eng. Ind.
0022-0817,
93
(
1
), pp.
39
46
.
8.
Haines
,
R. S.
, 1981, “
Minimum rms Shaking Moment or Driving Torque of a Force-Balanced 4-Bar Linkage Using Feasible Counterweights
,”
Mech. Mach. Theory
0094-114X,
16
, pp.
185
190
.
9.
Tepper
,
F. R.
, and
Lowen
,
G. G.
, 1975, “
Shaking Force Optimization of Four-Bar Linkage With Adjustable Constraints on Ground Bearing Forces
,”
ASME J. Eng. Ind.
0022-0817,
97
(
2
), pp.
643
651
.
10.
Dresig
,
H.
, and
Schönfeld
,
S.
, 1976, “
Rechnergestützte Optimierung der Antriebs- und Gestellkraftgrössen Ebener Koppelgetriebe (Computer-Aided Optimization of Driving and Frame Reaction Forces of Planar Linkages)
,”
Mech. Mach. Theory
0094-114X,
11
(
6
), pp.
363
379
.
11.
Tricamo
,
S. J.
, and
Lowen
,
G. G.
, 1983, “
Simultaneous Optimization of Dynamic Reactions of a Four-Bar Linkage With Prescribed Maximum Shaking Force
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
105
, pp.
520
525
.
12.
Qi
,
N. M.
, and
Pennestri
,
E.
, 1991, “
Optimum Balancing of Four-Bar Linkages-A Refined Algorithm
,”
Mech. Mach. Theory
0094-114X,
26
(
3
), pp.
337
348
.
13.
Guo
,
G.
,
Morita
,
N.
, and
Torii
,
T.
, 2000, “
Optimum Dynamic Design of Planar Linkage Using Genetic Algorithms
,”
JSME Int. J., Ser. C
1340-8062,
43
(
2
), pp.
372
377
.
14.
Demeulenaere
,
B.
,
Aertbeliën
,
E.
,
Verschuure
,
M.
,
Swevers
,
J.
, and
De Schutter
,
J.
, 2006, “
Ultimate Limits for Counterweight Balancing of Crank-Rocker Four-Bar Linkages
,”
ASME J. Mech. Des.
1050-0472,
128
, pp.
1272
1284
.
15.
Kochev
,
I. S.
, and
Gurdev
,
G. H.
, 1988, “
General Criteria for Optimum Balancing of Combined Shaking Force and Shaking Moment in Planar Linkages
,”
Mech. Mach. Theory
0094-114X,
23
(
6
), pp.
481
489
.
16.
Johnson
,
W. E.
, and
Schenectady
,
N. Y.
, 1935, “
A Method of Balancing Reciprocating Machines
,”
ASME J. Appl. Mech.
0021-8936,
57
, pp.
A81
-
A86
.
17.
Zhang
,
S.
, and
Chen
,
J.
, 1995, “
The Optimum Balance of Shaking Force and Shaking Moment of Linkage
,”
Mech. Mach. Theory
0094-114X,
30
, pp.
589
597
.
18.
Boyd
,
S.
, and
Vandenberghe
,
L.
, 2004,
Convex Optimization
,
Cambridge University Press
.
19.
Kochev
,
I. S.
, 1988, “
A New General Method for Full Force Balancing of Planar Linkages
,”
Mech. Mach. Theory
0094-114X,
23
(
6
), pp.
475
480
.
20.
Atkeson
,
C. G.
,
An
,
C. H.
, and
Hollerbach
,
J. M.
, 1986, “
Estimation of Inertial Parameters of Manipulator Loads and Links
,”
Int. J. Robot. Res.
0278-3649,
5
(
3
), pp.
101
119
.
21.
Berkof
,
R. S.
, and
Lowen
,
G. G.
, 1969, “
A New Method for Completely Force Balancing Simple Linkages
,”
ASME J. Eng. Ind.
0022-0817,
91
(
1
), pp.
21
26
.
22.
Hertrich
,
F. R.
, 1963, “
How to Balance High-Speed Mechanisms With Minimum Inertia Counterweights
,”
Mach. Des.
0024-9114,
35
(
6
), pp.
160
164
.
23.
Löfberg
,
J.
, 2004, “
YALMIP: A Toolbox for Modeling and Optimization in Matlab
,”
Proceedings of 2004 IEEE CCA/ISIC/CACSD
,
Taipei, Taiwan
, Paper No. SaM09.1.
24.
Sturm
,
J. F.
, 1999, “
Using Sedumi 1.02, A Matlab Toolbox for Optimization Over Symmetric Cones
,”
Optim. Methods Software
1055-6788,
11–12
, pp.
625
653
, Special Issue on Interior Point Methods (CD Supplement With Software).
25.
Lobo
,
M. S.
,
Vandenberghe
,
L.
,
Boyd
,
S.
, and
Lebret
,
H.
, 1998, “
Applications of Second-Order Cone Programming
,”
Linear Algebr. Appl.
0024-3795,
284
(
1–3
), pp.
193
228
.
You do not currently have access to this content.