This paper presents an alternative to fabrication methods commonly used in compliant mechanisms research, resulting in a new class of compliant mechanisms called wireform mechanisms. This technique integrates torsional springs made of formed wire into compliant mechanisms. In this way the desired force, stiffness, and motion can be achieved from a single piece of formed wire. Two techniques of integrating torsion springs are fabricated and modeled: helical coil torsion springs and torsion bars. Because the mechanisms are more complex than ordinary springs, simplified models, which aid in design, are presented, which represent the wireform mechanisms as rigid-body mechanisms using the pseudo-rigid-body model. The method is demonstrated through the design of a mechanically tristable mechanism. The validity of the simplified models is discussed by comparison to finite element models and, in the case of the torsion-bar mechanism, to experimental measurements.

1.
Mortensen
,
C. R.
,
Weight
,
B. L.
,
Howell
,
L. L.
, and
Magleby
,
S. P.
, 2000, “
Compliant Mechanism Prototyping
,”
Proceedings of the ASME 2000 Design Engineering Technical Conferences
, Paper No. DETC2000/MECH-14204.
2.
Herring
,
A.
,
Magleby
,
S. P.
,
Howell
,
L. H.
, and
Todd
,
R. H.
, 2001, “
High Production Manufacturing Considerations for Metallic Compliant Mechanisms With Long Thin Beams
,”
Proceedings of the ASME 2001 Design Engineering Technical Conferences
, Paper No. DETC2001/DFM-00001.
3.
Soroushian
,
P.
,
Chowdhury
,
H.
, and
Nossoni
,
A.
, 2003, “
Design and Experimental Verification of Pseudoelastic-Based Constant-Force Springs
,”
J. Intell. Mater. Syst. Struct.
,
14
(
8
), pp.
475
481
. 1045-389X
4.
Vehar
,
C.
,
Kota
,
S.
, and
Dennis
,
R.
, 2004, “
Closed-Loop Tape Springs as Fully Compliant Mechanisms: Preliminary Investigations
,”
Proceedings of the ASME 2004 Design Engineering Technical Conferences
, Paper No. DETC2004-57403.
5.
Parise
,
J.
,
Howell
,
L. L.
, and
Magleby
,
S. P.
, 2001, “
Ortho-Planar Linear-Motion Springs
,”
Mech. Mach. Theory
0094-114X,
36
(
11-12
), pp.
1281
1299
.
6.
Rasmussen
,
N. O.
, 2005, “
Behavior of Compliant Orth-Planar Springs Under Complex Loads
,” M.S. thesis, Brigham Young University, Provo.
7.
Robison
,
A.
, 2006, “
Modeling and Validation of Tension Element Based Mechanisms for Golf Ball-Club Impact
,” M.S. thesis, Brigham Young University, Provo.
8.
Miller
,
S. F.
,
Kao
,
C.
,
Shih
,
A. J.
, and
Qu
,
J.
, 2005, “
Investigation of Wire Electrical Discharge Machining of Thin Cross-Sections and Compliant Mechanisms
,”
Int. J. Mach. Tools Manuf.
,
45
(
15
), pp.
1717
1725
. 0890-6955
9.
Cannon
,
J. R.
, and
Howell
,
L. L.
, 2005, “
A Compliant Contact-Aided Revolute Joint
,”
Mech. Mach. Theory
0094-114X,
40
(
11
), pp.
1273
1293
.
10.
Crane
,
N. B.
,
Howell
,
L. L.
,
Weight
,
B. L.
, and
Magleby
,
S. P.
, 2004, “
Compliant Floating-Opposing-Arm (FOA) Centrifugal Clutch
,”
ASME J. Mech. Des.
0161-8458,
126
(
1
), pp.
169
177
.
11.
Han
,
J. S.
,
Müller
,
C.
,
Wallrabe
,
U.
, and
Korvink
,
J. G.
, 2007, “
Design, Simulation, and Fabrication of a Quadstable Monolithic Mechanism With x- and y-Directional Bistable Curved Beams
,”
ASME J. Mech. Des.
0161-8458,
129
(
11
), pp.
1198
1203
.
12.
Pendleton
,
T. M.
, and
Jensen
,
B. D.
, 2007, “
Development of a Tristable Compliant Mechanism
,”
Proceedings of the 12th World Congress in Mechanism and Machine Science
.
13.
Opdahl
,
P. G.
,
Jensen
,
B. D.
, and
Howell
,
L. L.
, 1998, “
An Investigation Into Compliant Bistable Mechanisms
,”
Proceedings of the 1998 ASME Design Engineering Technical Conferences
, Paper No. DETC98/MECH-5914.
14.
Howell
,
L. L.
, 2001,
Compliant Mechanisms
,
Wiley
,
New York
.
15.
Shigley
,
J. E.
,
Mischke
,
C. R.
, and
Budynas
,
R. G.
, 2004,
Mechanical Engineering Design
,
7th ed.
,
McGraw-Hill
,
New York
.
16.
Gere
,
J. M.
, 2001,
Mechanics of Materials
,
5th ed.
,
Brooks-Cole
,
Belmont, MA
.
You do not currently have access to this content.