Computational models with variable fidelity have been widely used in engineering design. To alleviate the computational burden, surrogate models are used for optimization without directly invoking expensive high-fidelity simulations. In this work, a model fusion technique based on the Bayesian–Gaussian process modeling is employed to construct cheap surrogate models to integrate information from both low-fidelity and high-fidelity models, while the interpolation uncertainty of the surrogate model due to the lack of sufficient high-fidelity simulations is quantified. In contrast to space filling, the sequential sampling of a high-fidelity simulation model in our proposed framework is objective-oriented, aiming for improving a design objective. Strategy based on periodical switching criteria is studied, which is shown to be effective in guiding the sequential sampling of a high-fidelity model toward improving a design objective as well as reducing the interpolation uncertainty. A design confidence metric is proposed as the stopping criterion to facilitate design decision making against the interpolation uncertainty. Examples are provided to illustrate the key ideas and features of model fusion, sequential sampling, and design confidence—the three key elements in the proposed variable-fidelity optimization framework.

1.
Gano
,
S. E.
,
Renuad
,
J. E.
, and
Sanders
,
B.
, 2004, “
Variable Fidelity Optimization Using a Kriging Based Scaling Function
,”
Proceedings of the Tenth AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference
,
Albany, NY
, Aug. 30–Sept. 1.
2.
Alexandrov
,
N. M.
,
Lewis
,
R. M.
,
Gumbert
,
C. R.
,
Green
,
L. L.
, and
Newman
,
P. A.
, 1999, “
Optimization With Variable-Fidelity Models Applied to Wing Design
,”
Proceedings of the 38th AIAA Aerospace Sciences Meeting and Exhibit
,
Reno, NV
, Jan. 10–13.
3.
Rodriguez
,
J. F.
,
Pérez
,
V. M.
,
Padmanabhan
,
D.
, and
Renaud
,
J. E.
, 2001, “
Sequential Approximate Optimization Using Variable Fidelity Response Surface Approximations
,”
Struct. Multidiscip. Optim.
1615-147X,
22
, pp.
24
34
.
4.
Panchal
,
J. H.
,
Choi
,
H.-J.
,
Shepherd
,
J.
,
Allen
,
J. K.
,
McDowell
,
D. L.
, and
Mistree
,
F.
, 2005, “
A Strategy for Simulation-Based Design of Multiscale, Multi-Functional Products and Associated Design Processes
,”
Proceedings of the ASME 2005 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference
,
Long Beach, CA
, Sept. 24–28.
5.
Liu
,
W. K.
,
Karpov
,
E. G.
, and
Park
,
H. S.
, 2005,
Nano-Mechanics and Materials: Theory, Multiscale Methods and Applications
,
Wiley
,
New York
.
6.
Gano
,
S. E.
,
Renaud
,
J. E.
,
Martin
,
J. D.
, and
Simpson
,
T. W.
, 2006, “
Update Strategies for Kriging Models Used in Variable Fidelity Optimization
,”
Struct. Multidiscip. Optim.
1615-147X,
32
(
4
), pp.
287
298
.
7.
Qian
,
Z.
,
Seepersad
,
C. C.
,
Joseph
,
V. R.
,
Allen
,
J. K.
, and
Wu
,
C. F. J.
, 2006, “
Building Surrogate Models Based on Detailed and Approximate Simulations
,”
ASME J. Mech. Des.
0161-8458,
128
, pp.
668
677
.
8.
Chen
,
W.
,
Xiong
,
Y.
,
Tsui
,
K.-L.
, and
Wang
,
S.
, 2008, “
A Design-Driven Validation Approach Using Bayesian Prediction Models
,”
ASME J. Mech. Des.
1050-0472
130
(
2
), p.
021101
.
9.
Wang
,
S.
,
Chen
,
W.
, and
Tsui
,
K.
, 2008, “
Bayesian Validation of Computer Models
,”
Technometrics
0040-1706, resubmission under review.
10.
Apley
,
D.
,
Liu
,
J.
, and
Chen
,
W.
, 2006, “
Understanding the Effects of Model Uncertainty in Robust Design With Computer Experiments
,”
ASME J. Mech. Des.
0161-8458,
128
(
945
), pp.
745
958
.
11.
Sacks
,
J.
,
Welch
,
W. J.
,
Mitchell
,
T. J.
, and
Wynn
,
H. P.
, 1989, “
Design and Analysis of Computer Experiments
,”
Stat. Sci.
0883-4237,
4
(
4
), pp.
409
423
.
12.
Martin
,
J. D.
, and
Simpson
,
T. W.
, 2002, “
Use of Adaptive Metamodeling for Design Optimization
,”
Proceedings of the Ninth AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization
,
Atlanta, GA
, Sept. 4–6.
13.
Turner
,
C. J.
,
Campbell
,
M. I.
, and
Crawford
,
R. H.
, 2003, “
Generic Sequential Sampling for Meta-Model Approximations
,”
Proceedings of the ASME 2003 Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Chicago, IL
, Sept. 2–6.
14.
Jin
,
R.
,
Chen
,
W.
, and
Sudjianto
,
A.
, 2002, “
On Sequential Sampling for Global Metamodeling in Engineering Design
,”
Proceedings of the 2002 ASME IDETC Conferences
, Montreal, QC, Canada, Sept. 29–Oct. 2.
15.
Lin
,
Y.
,
Mistree
,
F.
, and
Allen
,
J. K.
, 2004, “
A Sequential Exploratory Experimental Design Method: Development of Appropriate Empirical Models in Design
,”
Proceedings of the ASME 2004 Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Salt Lake City, UT
, Sept. 28–Oct. 2.
16.
Farhang-Mehr
,
A.
, and
Azarm
,
S.
, 2005, “
Bayesian Meta-Modeling of Engineering Design Simulations: A Sequential Approach With Adaptation to Irregularities in the Response Behavior
,”
Int. J. Numer. Methods Eng.
0029-5981,
62
(
15
), pp.
2104
2126
.
17.
Romero
,
D. A.
,
Amon
,
C. H.
, and
Finger
,
S.
, 2006, “
On Adaptive Sampling for Surrogate Models in Simulation-Based Design and Optimization
,”
Proceedings of the ASME 2006 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Philadelphia, PA
, Sept. 10–13.
18.
Rai
,
R.
, and
Campbell
,
M.
, 2008, “
Q2S2: A New Methodology for Merging Quantitative and Qualitative Information in Experimental Design
,”
ASME J. Mech. Des.
0161-8458,
130
(
3
), p.
031103
.
19.
Jones
,
D. R.
,
Schonlau
,
M.
, and
Welch
,
W. J.
, 1998, “
Efficient Global Optimization of Expensive Black-Box Functions
,”
J. Global Optim.
0925-5001,
13
(
4
), pp.
455
492
.
20.
Sasena
,
M. J.
, 2002, “
Flexibility and Efficiency Enhancements for Constrained Global Design Optimization With Kriging Approximations
,” Ph.D. thesis, University of Michigan, Ann Arbor, MI.
21.
Bandler
,
J. W.
,
Cheng
,
Q. S.
,
Dakroury
,
S. A.
,
Mohamed
,
A. S.
,
Bakr
,
M. H.
,
Madsen
,
K.
, and
Sondergaard
,
J.
, 2004, “
Space Mapping: The State of the Art
,”
IEEE Trans. Microwave Theory Tech.
0018-9480,
52
(
1
), pp.
337
361
.
22.
Huang
,
D.
,
Allen
,
T. T.
,
Notz
,
W. I.
, and
Miller
,
R. A.
, 2006, “
Sequential Kriging Optimization Using Multiple-Fidelity Evaluations
,”
Struct. Multidiscip. Optim.
1615-147X,
32
(
5
), pp.
369
382
.
23.
Hastie
,
T.
,
Tibshirani
,
R.
, and
Friedman
,
J.
, 2001,
The Elements of Statistical Learning, Data Mining, Inference and Prediction
,
Springer
,
New York
.
24.
Santner
,
T. J.
,
Williams
,
B. J.
, and
Notz
,
W. I.
, 2003,
The Design and Analysis of Computer Experiments
,
Springer-Verlag
,
New York
.
25.
Jones
,
D. R.
, 2001, “
A Taxonomy of Global Optimization Methods Based on Response Surfaces
,”
J. Global Optim.
0925-5001,
21
(
4
), pp.
345
383
.
26.
Stein
,
M. L.
, 1999,
Interpolation of Spatial Data: Some Theory of Kriging
,
Springer-Verlag
,
New York
.
27.
Qian
,
Z.
, and
Wu
,
C. F. J.
, 2005,
Bayesian Hierarchical Modeling for Integrating Low-Accuracy and High Accuracy Experiments
,
Georgia Institute of Technology
,
Atlanta, GA
.
28.
Sekishiro
,
M.
,
Venter
,
G.
, and
Balabanov
,
V.
, 2006, “
Combined Kriging and Gradient-Based Optimization Method
,”
Proceedings of the 11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference
,
Portsmouth, VA
, Sept. 6–8.
29.
Cox
,
D. D.
, and
John
,
S.
, 1997, “
SDO: A Statistical Method for Global Optimization
,”
Multidisciplinary Design Optimization: State of the Art
,
SIAM
,
Philadelphia, PA
, pp.
315
329
.
30.
Hazelrigg
,
G. A.
, 2003, “
Thoughts on Model Validation for Engineering Design
,”
ASME Design Technical Conference
,
Chicago, IL
, Sept. 2–6.
31.
Leary
,
S. J.
,
Bhaskar
,
A.
, and
Keane
,
A. J.
, 2004, “
A Derivative Based Surrogate Model for Approximating and Optimizing the Output of an Expensive Computer Simulation
,”
J. Global Optim.
,
30
, pp.
39
58
. 0925-5001
32.
Jin
,
R.
,
Chen
,
W.
, and
Sudjianto
,
A.
, 2005, “
An Efficient Algorithm for Constructing Optimal Design of Computer Experiments
,”
J. Stat. Plan. Infer.
0378-3758,
134
(
1
), pp.
268
287
.
33.
Jin
,
R.
, 2005, “
Enhancements of Metamodeling Techniques on Engineering Design
,” Ph.D. thesis, University of Illinois at Chicago, Chicago, IL.
You do not currently have access to this content.