A mechanical amplifier is an important device, which together with a piezoelectric actuator can achieve motion with high resolution and long range. In this paper, a new topology based on a symmetric five-bar structure for displacement amplification is proposed, and a compliant mechanism is implemented for the amplifier. In short, the new mechanical amplifier is called a compliant mechanical amplifier (CMA). The proposed CMA can achieve large amplification ratio and high natural frequency, as opposed to the existing CMAs, in terms of topology. Detailed analysis with finite element method has further shown that a double symmetric beam five-bar structure using corner-filleted hinges can provide good performances compared with its counterpart, which is based on four-bar topology. Finally, experiments are conducted to give some validation of the theoretical analysis.

1.
Ouyang
,
P. R.
,
Tjiptoprodjo
,
R. C.
,
Zhang
,
W. J.
, and
Yang
,
G. S.
, 2007, “
Micro-motion Devices Technology: The State of Arts Review
,”
Int. J. Adv. Manuf. Technol.
0268-3768, http://www.springerlink.com/content/j01055248rgm151t/http://www.springerlink.com/content/j01055248rgm151t/.
2.
Howell
,
L. L.
, 2001,
Compliant Mechanisms
,
Wiley and Sons
,
New York
.
3.
Timoshenko
,
S. P.
, and
Gere
,
J. M.
, 1961,
Theory of Elastic Stability
,
McGraw-Hill
,
New York
.
4.
Lu
,
K. J.
, and
Kota
,
S.
, 2006, “
Topology and Dimensional Synthesis of Compliant Mechanisms Using Discrete Optimization
,”
ASME J. Mech. Des.
1050-0472,
128
(
5
), pp.
1080
1091
.
5.
Hull
,
P. V.
, and
Canfield
,
S.
, 2006, “
Optimal Synthesis of Compliant Mechanisms Using Subdivision and Commercial FEA
,”
ASME J. Mech. Des.
1050-0472,
128
(
2
), pp.
337
348
.
6.
Su
,
H. J.
, and
McCathy
,
J. M.
, 2007, “
Synthesis of Bistable Compliant Four-bar Mechanisms using Polynomial Homotopy
,”
ASME J. Mech. Des.
1050-0472,
129
(
10
), pp.
1094
1098
.
7.
Kota
,
S.
,
Hetrick
,
J.
,
Li
,
Z.
, and
Saggere
,
L.
, 1999, “
Tailoring Unconventional Actuators Using Compliant Transmissions: Design Methods and Applications
,”
IEEE/ASME Trans. Mechatron.
1083-4435,
4
(
4
), pp.
396
408
.
8.
Kota
,
S.
,
Rodgers
,
M. S.
, and
Hetrick
,
J. A.
, 2001, “
Compliant Displacement-Multiplying Apparatus for Microelectromechanical Systems
,” U.S. Patent No. 6,175,170.
9.
Hetrick
,
J.
, and
Kota
,
S.
, 2003, “
Displacement Amplification Structure and Device
,” U.S. Patent No. 6,557,436.
10.
King
,
T.
, and
Xu
,
W.
, 1996, “
The Design and Characteristics of Piezomotors Using Flexure-Hinged Displacement Amplifiers
,”
Part. Part. Syst. Charact.
0934-0866,
19
(
2
), pp.
189
197
.
11.
Xu
,
W.
, and
King
,
T.
, 1996, “
Flexure Hinges for Piezoactuator Displacement Amplifiers: Flexibility, Accuracy, and Stress Considerations
,”
Precis. Eng.
0141-6359,
19
(
1
), pp.
4
10
.
12.
Furukawa
,
E.
,
Mizuno
,
M.
, and
Doi
,
T.
, 1995, “
Development of a Flexure-Hinged Translation Mechanism Driven by Two Piezoelectric Stacks
,”
JSME Int. J., Ser. C
1340-8062,
38
(
4
), pp.
743
748
.
13.
Pokines
,
B. J.
, and
Garcia
,
E.
, 1998, “
A Smart Material Microamplification Mechanism Fabricated Using LIGA
,”
Smart Mater. Struct.
0964-1726,
7
(
1
), pp.
105
112
.
14.
Yang
,
R. Y.
,
Jouaneh
,
M.
, and
Scheweizer
,
R.
, 1996, “
Design and Characterization of a Low-Profile Micropositioning Stage
,”
Precis. Eng.
0141-6359,
18
(
1
), pp.
20
29
.
15.
Lobontiu
,
N.
, and
Garcia
,
E.
, 2003, “
Analytical Model of Displacement Amplification and Stiffness Optimization for a Class of Flexure-Based Compliant Mechanisms
,”
Comput. Struct.
0045-7949,
81
(
32
), pp.
2797
2810
.
16.
Saif
,
M. T. A.
, and
MacDonald
,
N. C.
, 1998, “
Measurement of Forces and Spring Constants of Microinstruments
,”
Rev. Sci. Instrum.
0034-6748,
69
(
3
), pp.
1410
1422
.
17.
Jiang
,
J.
, and
Mockensturm
,
E. M.
, 2003, “
A Novel Motion Amplifier Using Axially Driven Buckling Beam
,”
Proceedings of the 2003 ASME International Mechanical Engineering Congress and Exposition
,
Washington, DC
, Nov. 16–21, Paper No., Report No. IMECE2003-42317.
18.
Su
,
X. P. S.
, and
Yang
,
H. S.
, 2001, “
Design of Compliant Microleverage Mechanisms
,”
Sens. Actuators, A
0924-4247,
87
(
3
), pp.
146
156
.
19.
Jouaneh
,
M.
, and
Yang
,
R. Y.
, 2003, “
Modeling of Flexure-Hinge Type Lever Mechanisms
,”
Precis. Eng.
0141-6359,
27
(
4
), pp.
407
418
.
20.
Rue
,
J. W.
, and
Gweon
,
D. G.
, 1997, “
Error Analysis of a Flexure Hinge Mechanism Induced by Machining Imperfection
,”
Precis. Eng.
0141-6359,
21
(
1
), pp.
83
89
.
21.
Bharti
,
S.
, and
Frecker
,
M.
, 2004, “
Optimal Design and Experimental Characterization of a Compliant Mechanism Piezoelectric Actuator for Inertially Stabilized Rifle
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
15
(
2
), pp.
93
106
.
22.
Ouyang
,
P. R.
, and
Zhang
,
W. J.
, 2005, “
Force Balancing of Robotic Mechanisms Based on Adjustment of Kinematic Parameters
,”
ASME J. Mech. Des.
1050-0472,
127
(
3
), pp.
433
440
.
23.
Lobontiu
,
N.
,
Paine
,
J. S. N.
,
Garcia
,
E.
, and
Goldfarb
,
M.
, 2001, “
Corner-Filleted Flexure Hinges
,”
ASME J. Mech. Des.
1050-0472,
123
(
3
), pp.
346
352
.
You do not currently have access to this content.