This paper proposes an equivalent mechanism approach for establishing the stiffness matrices of some 3–5DOF (degree of freedom) parallel kinematic machines (PKMs) with SP̱R- or RP̱S-type legs and solving their elastic deformations. First, the geometric constraints of constrained wrench of these PKMs are analyzed, and the poses of the active/constrained forces are determined. Second, based on the principle of virtue work and the determined active/constrained forces, the formulas are derived for solving the 6×6 Jacobian matrices of these PKMs and the stiffness matrices of SP̱R or RP̱S-type active legs. Third, based on the elastic deformations of the SP̱R or RP̱S active legs, the equivalent 6-DOF rigid PKMs of these elastic PKMs are constructed, and their 6×6 Jacobian matrices are derived. Finally, the formulas are derived for solving the total stiffness matrices and the elastic deformation of the 3DOF 3SP̱R, 3DOF 3RP̱S, 4DOF 2SP̱S+2SP̱R, and 5DOF 4SP̱S+SP̱R PKMs.

1.
Huang
,
Z.
,
Kong
,
L. F.
, and
Fang
,
Y. F.
, 1997,
Theory on Parallel Robotics and Control
,
Machinery Industry
,
Beijing
.
2.
Fang
,
Y. F.
, and
Huang
,
Z.
, 1997, “
Kinematics of a Three-Degree-Of-Freedom In-Parallel Actuated Manipulator Mechanism
,”
Mech. Mach. Theory
0094-114X,
32
(
7
), pp.
789
796
.
3.
Gosselin
,
C. M.
, and
Zhang
,
D.
, 2002, “
Stiffness Analysis of Parallel Mechanisms Using a Lumped Model
,”
Int. J. Rob. Autom.
0826-8185,
17
(
1
), pp.
17
27
.
4.
Huang
,
T.
,
Zhao
,
X.
, and
Whitehouse
,
D. J.
, 2002, “
Stiffness Estimation of a Tripod-Based Parallel Kinematic Machine
,”
IEEE Trans. Rob. Autom.
1042-296X,
18
(
1
), pp.
50
58
.
5.
Zhang
,
D. L.
, and
Sherman
,
Y. T.
, 2004, “
Stiffness Modeling for a Class of Reconfigurable PKMs With Three to Five Degrees of Freedom
,”
J. Manuf. Syst.
0278-6125,
23
(
4
), pp.
316
327
.
6.
Canfield
,
S. L.
,
Lobontiu
,
N.
,
O’Malley
,
E. J.
,
Paine
,
J. S. N.
, and
Samuelson
,
M.
, 2002, “
Development of a Spatial Compliant Manipulator
,”
Int. J. Rob. Autom.
0826-8185,
17
(
1
), pp.
63
71
.
7.
Liu
,
X.-J.
,
Wang
,
J.
, and
Pritschow
,
G.
, 2006, “
On the Optimal Kinematic Design of the PRRRP 2-DOF Parallel Mechanism
,”
Mech. Mach. Theory
0094-114X,
41
(
9
), pp.
1111
1130
.
8.
Huang
,
S.
, and
Schimmels
,
J. M.
, 2001, “
Minimal Realizations of Spatial Stiffnesses With Parallel or Serial Mechanisms Having Concurrent Axes
,”
J. Rob. Syst.
0741-2223,
18
(
3
), pp.
135
146
.
9.
Li
,
Y.
, and
Xu
,
Q.
, 2008, “
Stiffness Analysis for a 3-PUU Parallel Kinematic Machine
,”
Mech. Mach. Theory
0094-114X,
43
(
2
), pp.
186
200
.
10.
Ceccarelli
,
M.
, and
Carbone
,
G.
, 2002, “
A Stiffness Analysis for Capaman (Cassino Parallel Manipulator)
,”
Mech. Mach. Theory
0094-114X,
37
(
5
), pp.
427
439
.
11.
Behzadipour
,
S.
, and
Khajepour
,
A.
, 2006, “
Stiffness of Cable-Based Parallel Manipulators With Application to Stability Analysis
,”
ASME J. Mech. Des.
1050-0472,
128
(
1
), pp.
303
310
.
12.
Carbone
,
G.
, and
Ceccarelli
,
M.
, 2004, “
A Stiffness Analysis for a Hybrid Parallel-Serial Manipulator
,”
Robotica
0263-5747,
22
(
5
), pp.
567
576
.
13.
Yoon
,
W.-K.
,
Suehiro
,
T.
,
Tsumaki
,
Y.
, and
Uchiyama
,
M.
, 2004, “
Stiffness Analysis and Design of a Compact Modified Delta Parallel Mechanism
,”
Robotica
0263-5747,
22
(
4
), pp.
463
475
.
14.
Sanger
,
D. J.
,
Chen
,
J. Q.
,
Zhang
,
S. J.
, and
Howard
,
D.
, 2000, “
General Method for the Stiffness Analysis of Manipulator Mechanisms
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
0954-4062,
214
(
5
), pp.
673
685
.
15.
Nie
,
Y. F.
,
Chang
,
S.
, and
Fan
,
X. K.
, 2007, “
The Parallel Mechanism of Node-Based Seamless Finite Element Method
,”
Comput. Model. Eng. Sci.
1526-1492,
19
(
2
), pp.
135
143
.
16.
Huang
,
C.
,
Hung
,
W.-H.
, and
Kao
,
I.
, 2002, “
New Conservative Stiffness Mapping for the Stewart-Gough Platform
,”
Proceedings—IEEE International Conference On Robotics and Automation
, Vol.
1
, pp.
823
828
.
17.
Pham
,
H.-H.
, and
Chen
,
I.-M.
, 2005, “x
Stiffness Modeling of Flexure Parallel Mechanism
,”
Precis. Eng.
0141-6359,
29
(
4
), pp.
467
478
.
18.
Arumugam
,
H. K.
,
Voyles
,
R. N.
, and
Bapat
,
S.
, “
Stiffness Analysis of a Class of Parallel Mechanisms for Micro-Positioning Applications
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Sendai, Japan
, Sept. 28–Oct.2, 2004, pp.
1826
1831
.
19.
Sui
,
C.
, and
Zhao
,
M.
, 2006, “
Statics and Stiffness Study on a 3-DOF Parallel Wire Driven Flexible Manipulator
,”
Chin. J. Mech. Eng.
0577-6686,
42
(
6
), pp.
205
210
.
20.
Fauroux
,
J. C.
, “
A Method for Modeling Analytical Stiffness of a Lower Mobility Parallel Manipulator
,”
Proceedings of the 2005 IEEE International Conference On Robotics And Automation
,
Barcelona, Spain
, Apr. 18–22, 2005, pp.
3232
3237
.
21.
Li
,
Y.-W.
,
Wang
,
J.-S.
, and
Wang
,
L.-P.
, “
Stiffness Analysis of a Stewart Platform-Based Parallel Pinematic Machine
,”
Proceedings—IEEE International Conference on Robotics and Automation
,
Knoxville, TN
, May 11–15, 2002, Vol.
4
, pp.
3672
3677
.
22.
Han
,
S.
,
Fang
,
Y.
, and
Huai
,
C.
, 2006, “
Stiffness Analysis of Four Degrees Parallel Manipulator
,”
Chin. J. Mech. Eng.
0577-6686,
42
, pp.
31
34
.
23.
Bai
,
Z.
, and
Chen
,
W.
, 2006, “
Stiffness Computation Model of Spherical Joints and PKM’s Stiffness Improvement by Redundant Leg
,”
Chin. J. Mech. Eng.
0577-6686,
42
(
10
), pp.
142
145+150
.
24.
Timoshenko
,
S. P.
, and
Gere
,
J.
, 1972,
Mechanics of Materials
,
Van Nostrand Reinhold
,
New York
.
25.
Lu
,
Y.
, and
Hu
,
B.
, 2008, “
Unification and Simplification of Velocity/Acceleration of Limited-DOF Parallel Manipulators With Linear Active Legs
,”
Mech. Mach. Theory
0094-114X
43
(
9
), pp.
1112
1128
.
You do not currently have access to this content.