Displacement-amplifying compliant mechanisms (DaCMs) reported in literature are widely used for actuator applications. This paper considers them for sensor applications that rely on displacement measurement, and proposes methods to evaluate and design such mechanisms. The motivation of this work is to increase the sensitivity of a micromachined capacitive accelerometer and a minute mechanical force sensor using DaCMs. A lumped spring-mass-lever (SML) model, which effectively captures the effects of appending a DaCM to a sensor, is introduced. This model is a generalization of the ubiquitously used spring-mass model for the case of an elastic body that has two points of interest—an input and an output. The SML model is shown to be useful in not only evaluating the suitability of an existing DaCM for a new application but also for designing a new DaCM. With the help of this model, we compare a number of DaCMs from literature and identify those that nearly meet the primary problem specifications. To obtain improved designs that also meet the secondary specifications, topology and size-optimization methods are used. For the two applications considered in this paper, we obtain a few new DaCM topologies, which are added to the catalog of DaCMs for future use. The spring-mass-lever model, the evaluation and design methods, and the catalog of DaCMs presented here are useful in other sensor and actuator applications.

1.
Howell
,
L.
, 2001,
Compliant Mechanisms
,
Wiley
,
New York
.
2.
Ananthasuresh
,
G. K.
, and
Howell
,
L. L.
, 2005, “
Mechanical Design of Compliant Microsystems: A Perspective and Prospects
,”
ASME J. Mech. Des.
1050-0472,
127
(
4
), pp.
736
738
.
3.
Saxena
,
A.
, and
Ananthasuresh
,
G. K.
, 2000, “
On an Optimal Property of Compliant Topologies
,”
Struct. Multidiscip. Optim.
1615-147X,
19
, pp.
36
49
.
4.
Canfield
,
S.
, and
Frecker
,
M.
, 2000, “
Topology Optimization of Compliant Mechanical Amplifiers for Piezoelectric Actuators
,”
Struct. Multidiscip. Optim.
1615-147X,
20
, pp.
269
279
.
5.
Maddisetty
,
H.
, and
Frecker
,
M.
, 2004, “
Dynamic Topology Optimization of Compliant Mechanisms and Piezoceramic Actuators
,”
ASME J. Mech. Des.
1050-0472,
126
, pp.
975
983
.
6.
Du
,
H.
,
Lau
,
G. K.
,
Lim
,
M. K.
, and
Qui
,
J.
, 2000, “
Topology Optimization of Mechanical Amplifiers for Piezo-Electric Actuators Under Dynamic Motion
,”
Smart Mater. Struct.
0964-1726,
9
, pp.
788
800
.
7.
Hetrick
,
J.
, and
Kota
,
S.
, 1999, “
An Energy Formulation for Parametric Size and Shape Optimization of Compliant Mechanisms
,”
ASME J. Mech. Des.
1050-0472,
121
, pp.
229
234
.
8.
Pedersen
,
C. B. W.
,
Fleck
,
N. A.
, and
Ananthasuresh
,
G. K.
, 2006, “
Design of a Compliant Mechanism to Modify an Actuator Characteristic to Deliver a Constant Output Force
,”
ASME J. Mech. Des.
1050-0472,
128
(
5
), pp.
1101
1112
.
9.
Kota
,
S.
,
Hetrick
,
J.
,
Zhe
,
L.
,
Rodgers
,
S.
, and
Krygowski
,
T.
, 2000, “
Synthesizing High-Performance Compliant Stroke Amplification Systems for MEMS
,”
The 13th Annual International Conference
, Miyazaki, Japan, Jan. 23–27, pp.
164
169
.
10.
Kota
,
S.
,
Hetrick
,
J.
,
Li
,
Z.
, and
Saggere
,
L.
, 1999, “
Tailoring Unconventional Actuators Using Compliant Transmissions: Design Methods and Applications
,”
Mechatronics
0957-4158,
4
, pp.
1083
4435
.
11.
Su
,
X. P. S.
, and
Yang
,
H. S.
, 2001, “
Two-Stage Compliant Micro-Leverage Mechanism Optimization in a Resonant Accelerometer
,”
Struct. Multidiscip. Optim.
1615-147X,
22
, pp.
328
336
.
12.
Pedersen
,
C.
, and
Seshia
,
A.
, 2004, “
On the Optimization of Compliant Force Amplifier Mechanisms for Surface Micromachined Resonant Accelerometers
,”
J. Micromech. Microeng.
0960-1317,
14
(
10
), pp.
1281
1293
.
13.
Artobolevski
,
I. I.
, 1986,
Mechanisms in Modern Engineering Design
, Vols.
1–3
,
Mir
,
Moscow
.
14.
Jones
,
F.
,
Horton
,
H.
, and
Newell
,
J.
, 1930,
Ingenious Mechanisms for Designers and Innovators
,
Industrial Press Inc.
,
New York
.
15.
Slater
,
N.
, and
Chironis
,
N.
, 1991,
Mechanisms and Mechanical Devices Sourcebook
,
McGraw-Hill
,
New York
.
16.
Ananthasuresh
,
G. K.
, 2003,
Optimal Synthesis Methods for MEMS
,
Kluwer Academic
,
Boston
.
17.
Howell
,
L. L.
, and
Midha
,
A.
, 1994, “
A Method for the Design of Compliant Mechanisms With Small-Length Flexural Pivots
,”
ASME J. Mech. Des.
1050-0472,
116
(
1
), pp.
280
290
.
18.
Bendsøe
,
M. P.
,
Olhoff
,
N.
, and
Sigmund
,
O.
, 2006,
Topological Design Optimization of Structures, Machines and Materials
,
Springer
,
Dordrecht, The Netherlands
.
19.
Yin
,
L.
,
Ananthasuresh
,
G. K.
, and
Eder
,
J.
, 2004, “
Optimal Design of a Cam-Flexure Clamp
,”
Finite Elem. Anal. Design
0168-874X,
90
(
9–10
), pp.
1157
1173
.
20.
Chae
,
J.
,
Kulah
,
H.
, and
Najafi
,
K.
, 2004, “
An In-Plane High-Sensitivity, Low-Noise Micro-g Silicon Accelerometer With CMOS Readout Circuitry
,”
J. Microelectromech. Syst.
1057-7157
13
(
4
), pp.
628
635
.
21.
Cappelleri
,
D.
,
Fink
,
J.
,
Mukundakrishnan
,
B.
,
Kumar
,
V.
, and
Trinkle
,
J.
, 2006, “
Designing Open-Loop Plans for Planar Micro-Manipulation
,”
IEEE International Conference on Robotic and Automation (ICRA)
, Orlando, FL, May 2006, pp.
637
642
.
22.
Wang
,
X.
,
Anathasuresh
,
G. K.
, and
Ostrowski
,
J. P.
, 2001, “
Vision-Based Sensing of Forces in Elastic Objects
,”
Sens. Actuators, A
0924-4247,
94
, pp.
142
156
.
23.
Lobontiu
,
N.
, and
Garcia
,
E.
, 2003, “
Analytical Model of Displacement Amplification and Stiffness Optimization for a Class of Flexure-Based Compliant Mechanisms
,”
Comput. Struct.
0045-7949,
81
, pp.
2797
2810
.
24.
Krishnan
,
G.
, 2007, “
Displacement-Amplifying Compliant Mechanisms for Sensor Applications
,” MS thesis, Mechanical Engineering, Indian Institute of Science, Bangalore, India.
25.
COMSOL, Finite Element Software, www.comsol.comwww.comsol.com.
26.
Krishnan
,
G.
, and
Ananthasuresh
,
G. K.
, 2006, “
An Objective Evaluation of Displacement-Amplifying Compliant Mechanisms for Sensor Applications
,”
CD-ROM Proceedings of the ASME International Design Engineering and Technical Conferences
,
Philadelphia, PA
, Sept. 10–13, Paper No. DETC2006–99345.
You do not currently have access to this content.