Many engineering systems are required to operate under changing operating conditions. A special class of systems called adaptive systems has been proposed in the literature to achieve high performance under changing environments. Adaptive systems acquire this powerful feature by allowing their design configurations to change with operating conditions. In the optimization of the adaptive systems, designers are often required to select (i) adaptive and (ii) nonadaptive (or fixed) design variables of the design configuration. Generally, the selection of these variables and the optimization of adaptive systems are performed sequentially, thus being a source of suboptimality. In this paper, we propose the Selection-Integrated Optimization (SIO) methodology, which integrates the two key processes: (1) the selection of the adaptive and fixed design variables and (2) the optimization of the adaptive system, thereby eliminating a significant source of suboptimality from adaptive system optimization problems. A major challenge to integrating these two key processes is the selection of appropriate fixed and adaptive design variables, which is discrete in nature. We propose the Variable-Segregating Mapping-Function (VSMF), which overcomes this challenge by progressively approximating the discreteness in the design variable selection process. This simple yet effective approach allows the SIO methodology to integrate the selection and optimization processes and helps avoid one significant source of suboptimality from the optimization procedure. The SIO methodology finds its applications in a variety of other engineering fields, such as product family optimization. However, in this paper, we limit the scope of our discussion to adaptive system optimization. The effectiveness of the SIO methodology is demonstrated by designing a new air-conditioning system called Active Building Envelope (ABE) system.

1.
Olewnik
,
A.
,
Brauen
,
T.
,
Ferguson
,
S.
, and
Lewis
,
K.
, 2004, “
A Framework for Flexible Systems and Its Implementation in Multiattribute Decision Making
,”
ASME J. Mech. Des.
1050-0472,
126
(
3
), pp.
412
419
.
2.
Khire
,
R. A.
,
Mullur
,
A. A.
, and
Messac
,
A.
, 2005, “
An Optimization Based Methodology to Design Flexible Systems Subjected to Changing Operating Conditions
,”
Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference—DETC2005
, Vol.
2
(
A
), pp.
199
211
.
3.
Nadir
,
W.
,
Kim
,
I. Y.
,
Hauser
,
D.
, and
de Weck
,
O.
, 2004, “
Multidisciplinary Structural Truss Topology Optimization for Reconfigurability
,”
Collection of Technical Papers—10th AIAA∕ISSMO Multidisciplinary Analysis and Optimization Conference
, Vol.
1
(
A
), pp.
472
487
.
4.
Wlezien
,
R.
,
Horner
,
G.
,
McGowan
,
A. R.
,
Padula
,
S.
,
Scott
,
M.
,
Silcox
,
R.
, and
Simpson
,
J.
, 1998, “
Aircraft Morphing Program
,”
Proc. SPIE
0277-786X,
3326
, pp.
176
187
.
5.
Jha
,
A. K.
, and
Kudva
,
J. N.
, 2004, “
Morphing Aircraft Concepts, Classifications, and Challenges
,”
Proc. SPIE
0277-786X,
5388
, pp.
213
224
.
6.
Janah
,
M.
, 2000, “
Changing Gears
,”
Red Herring
, pp.
230
232
.
7.
Webb
,
A.
, 2002, “
A Piston Revolution
,”
Eng. Manage. J.
1042-9247,
12
(
1
), pp.
25
30
.
8.
Kulatilaka
,
N.
, 1988, “
Valuing the Flexibility of Flexible Manufacturing Systems
,”
IEEE Trans. Eng. Manage.
0018-9391,
35
(
4
), pp.
250
257
.
9.
Buzacott
,
J. A.
, and
Yao
,
D. D.
, 1986, “
Flexible Manufacturing Systems: A Review of Analytical Models
,”
Manage. Sci.
0025-1909,
32
(
7
), pp.
890
905
.
10.
Haubelt
,
C.
,
Teich
,
J.
,
Richter
,
K.
, and
Ernst
,
R.
, 2002, “
System Design for Flexibility
,”
Proceedings of Design, Automation and Test in Europe Conference
,
Paris, France
, pp.
854
861
.
11.
Olewnik
,
A. T.
, 2002, “
A Comprehensive Decision Support Framework for Flexible System Design
,” Master’s thesis, State University of New York at Buffalo.
12.
Parkinson
,
M.
,
Reed
,
M.
,
Kokkolaras
,
M.
, and
Papalambros
,
P.
, 2005, “
Robust Truck Cabin Layout Optimization Using Advanced Driver Variance Models
,”
Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference—DET2005
,
Long Beach, CA
, Vol.
2
(
B
), pp.
1103
1109
.
13.
Roser
,
C.
, and
Kazmer
,
D.
, 2000, “
Flexible Design Methodology
,”
ASME Design for Manufacturing Conference
, Baltimore, MD, Sept. DETC00∕DFM-14016.
14.
Chen
,
W.
,
Allen
,
J. K.
,
Tsui
,
K.-L.
, and
Mistree
,
F.
, 1996, “
A Procedure for Robust Design: Minimizing Variations Caused by Noise Factors and Control Factors
,”
ASME J. Mech. Des.
1050-0472,
118
(
4
), pp.
478
485
.
15.
Gunawan
,
S.
, and
Azarm
,
S.
, 2005, “
Multi-Objective Robust Optimization Using a Sensitivity Region Concept
,”
Struct. Multidiscip. Optim.
1615-147X,
29
(
1
), pp.
50
60
.
16.
Ferguson
,
S.
, and
Lewis
,
K.
, 2004, “
Effective Development of Flexible Systems in Multidisciplinary Optimization
,”
Collection of Technical Papers—10th AIAA∕ISSMO Multidisciplinary Analysis and Optimization Conference
,
Albany, NY
, Vol.
1
, pp.
100
112
.
17.
Messac
,
A.
, and
Malek
,
K.
, 1992, “
Control Structure Integrated Design
,”
AIAA J.
0001-1452,
30
(
8
), pp.
2124
2131
.
18.
Fathy
,
H.
,
Reyer
,
J.
,
Papalambros
,
P.
, and
Ulsoy
,
A.
, 2001, “
On the Coupling Between the Plant and Controller Optimization Problems
,”
Proceedings of the American Control Conference
,
Arlington, VA
, Vol.
3
, pp.
1864
1869
.
19.
Mistree
,
F.
,
Smith
,
W. F.
, and
Bras
,
B. A.
, 1993, “
A Decision-Based Approach to Concurrent Engineering
,”
Handbook of Concurrent Engineering
,
Chapman & Hall
,
New York
, pp.
127
158
.
20.
Mistree
,
F.
,
Smith
,
W. F.
,
Bras
,
B. A.
,
Allen
,
J. K.
, and
Muster
,
D.
, 1990, “
Decision-Based Design: A Contemporary Paradigm for Ship Design
,”
Soc. Nav. Archit. Mar. Eng., Trans.
0081-1661,
98
, pp.
565
597
.
21.
Simpson
,
T. W.
,
Chen
,
W.
,
Allen
,
J. K.
, and
Mistree
,
F.
, 1996, “
Conceptual Design of a Family of Products Through the Use of the Robust Concept Exploration Method
,”
6th AIAA∕USAF∕NASA∕ISSMO Symposium on Multidisciplinary Analysis and Optimization
,
Bellevue, WA
, Vol.
2
, pp.
1535
1545
.
22.
Nayak
,
R.
,
Chen
,
W.
, and
Simpson
,
T.
, 2002, “
Variation-Based Methodology for Product Family Design
,”
Eng. Optimiz.
0305-215X,
34
(
1
), pp.
65
81
.
23.
Mistree
,
F.
,
Hughes
,
O. F.
, and
Bras
,
B. A.
, 1993,
The Compromise Decision Support Problem and the Adaptive Linear Programming Algorithm
,
AIAA
,
Washington
, pp.
247
289
.
24.
Fellini
,
R.
,
Kokkolaras
,
M.
,
Papalambros
,
P.
, and
Perez-Duarte
,
A.
, 2005, “
Platform Selection Under Performance Bounds in Optimal Design of Product Families
,”
ASME J. Mech. Des.
1050-0472,
127
(
4
), pp.
524
535
.
25.
Fellini
,
R.
,
Kokkolaras
,
M.
,
Michelena
,
N.
,
Papalambros
,
P.
,
Saitou
,
K.
,
Perez-Duarte
,
A.
, and
Fenyes
,
P.
, 2004, “
A Sensitivity-Based Commonality Strategy for Family Products of Mild Variation, With Application to Automotive Body Structures
,”
Struct. Multidiscip. Optim.
1615-147X,
27
(
1–2
), pp.
89
96
.
26.
D’Souza
,
B.
, and
Simpson
,
T. W.
, 2003, “
A Genetic Algorithm Based Method for Product Family Design Optimization
,”
Eng. Optimiz.
0305-215X,
35
(
1
), pp.
1
18
.
27.
Gonzalez-Zugasti
,
J.
,
Otto
,
K.
, and
Baker
,
J.
, 2000, “
A Method for Architecting Product Platforms
,”
Res. Eng. Des.
0934-9839,
12
(
2
), pp.
61
72
.
28.
Li
,
H.
, and
Azarm
,
S.
, 2002, “
An Approach for Product Line Design Selection Under Uncertainty and Competition
,”
ASME J. Mech. Des.
1050-0472,
124
(
3
), pp.
385
392
.
29.
Messac
,
A.
,
Martinez
,
M.
, and
Simpson
,
T.
, 2002, “
A Penalty Function for Product Family Design Using Physical Programming
,”
ASME J. Mech. Des.
1050-0472,
124
(
2
), pp.
164
172
.
30.
Messac
,
A.
, and
Ismail-Yahaya
,
A.
, 2001, “
Required Relationship Between Objective Function and Pareto Frontier Orders: Practical Implications
,”
AIAA J.
0001-1452,
39
(
11
), pp.
2168
2174
.
31.
Watson
,
L.
, and
Haftka
,
R. T.
, 1989, “
Modern Homotopy Methods in Optimization
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
74
,
289304
.
32.
Thevenot
,
H.
, and
Simpson
,
T. W.
, 2006, “
Commonality Indices for Product Family Design: A Detailed Comparison
,”
J. Eng. Design
0954-4828,
17
(
2
), pp.
99
119
.
33.
Khire
,
R.
,
Messac
,
A.
, and
Dessel
,
S. V.
, 2005, “
Design of Thermoelectric Heat Pump Unit for Active Building Envelope Systems
,”
Int. J. Heat Mass Transfer
0017-9310,
48
(
19–20
), pp.
4028
4040
.
34.
Van Dessel
,
S.
,
Messac
,
A.
, and
Khire
,
R.
, 2004, “
Active Building Envelopes: A Preliminary Analysis
,”
Asia International Renewable Energy Conference
,
Beijing, China
.
35.
Khire
,
R.
,
Van Dessel
,
S.
, and
Messac
,
A.
, 2004, “
Active Building Envelopes: A New Solar Driven Heat Transfer Mechanism
,”
19th European PV Solar Energy Conference
,
Paris, France
.
36.
Rivas
,
F.
,
Khire
,
R.
,
Messac
,
A.
, and
Desel
,
S. V.
, 2005, “
Economic Viability Assessment of Active Building Envelope Systems
,”
Collection of Technical Papers—AIAA∕ASME∕ASCE∕AHS∕ASC Structures, Structural Dynamics and Materials Conference
, Vol.
5
, pp.
3235
3251
.
37.
Rowe
,
D. M.
, 1995,
CRC Handbook of Thermoelectrics
,
CRC
,
Boca Raton, FL
.
38.
Nagy
,
M. J.
, and
Buist
,
R.
, 1994, “
Effect of Heat Sink Design on Thermoelectric Cooling Performance
,”
AIP Conf. Proc.
0094-243X,
316
(
1
), pp.
147
149
.
39.
Melcor Corporations
, 2004, “
Melcor Thermal Solutions Catalog
,” www.melcor.comwww.melcor.com, pp.
47
49
.
40.
Lasnier
,
F.
, and
Ang
,
T. G.
, 1990,
Photovoltaic Engineering Handbook
,
IOP
,
Bristol
.
41.
Messac
,
A.
,
Ismail-Yahaya
,
A.
, and
Mattson
,
C. A.
, 2003, “
The Normalized Normal Constraint Method for Generating the Pareto Frontier
,”
Struct. Multidiscip. Optim.
1615-147X,
25
(
2
), pp.
86
98
.
You do not currently have access to this content.