In practical engineering applications, there exist two different types of uncertainties: aleatory and epistemic uncertainties. This study attempts to develop a robust design optimization with epistemic uncertainty. For epistemic uncertainties, a possibility-based design optimization improves the failure rate, while a robust design optimization minimizes the product quality loss. In general, product quality loss is described using the first two statistical moments for aleatory uncertainty: mean and standard deviation. However, there is no metric for product quality loss defined when having epistemic uncertainty. This paper first proposes a new metric for product quality loss with epistemic uncertainty, and then a possibility-based robust design optimization. For numerical efficiency and stability, an enriched performance measure approach is employed for possibility-based robust design optimization, and the maximal possibility search is used for a possibility analysis. Three different types of robust objectives are considered for possibility-based robust design optimization: smaller-the-better type (S-Type), larger-the-better type (L-Type), and nominal-the-better type (N-Type). Examples are used to demonstrate the effectiveness of possibility-based robust design optimization using the proposed metric for product quality loss with epistemic uncertainty.

1.
Helton
,
J. C.
, 1997, “
Uncertainty and Sensitivity Analysis in the Presence of Stochastic and Subjective Uncertainty
,”
J. Stat. Comput. Simul.
0094-9655,
57
, pp.
3
76
.
2.
Palle
,
T. C.
, and
Michael
,
J. B.
, 1982,
Structural Reliability Theory and Its Applications
,
Springer-Verlag
, Berlin.
3.
Ben-Haim
,
Y.
, and
Elishakoff
,
I.
, 1990,
Convex Methods of Uncertainty in Applied Mechanics
,
Elsevier
, Amsterdam.
4.
Du
,
L.
,
Youn
,
B. D.
, and
Choi
,
K. K.
, 2006, “
An Inverse Possibility Analysis Method for Possibility-Based Design Optimization
,”
AIAA J.
0001-1452,
44
(
11
), pp.
2682
2690
.
5.
Zadeh
,
L. A.
, 1965, “
Fuzzy Sets
,”
Inf. Control.
0019-9958,
8
, pp.
338
353
.
6.
Dubois
,
D.
, and
Prade
,
H.
, 1988,
Possibility Theory: An Approach to Computerized Processing of Uncertainty
,
Plenum Press
, New York, NY.
7.
Rao
,
S. S.
, 1987, “
Description and Optimum Design of Fuzzy Mechanical Systems
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
109
, pp.
126
132
.
8.
Ferrari
,
P.
, and
Savoia
,
M.
, 1998, “
Fuzzy Number Theory to Obtain Conservative Results With Respect to Probability
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
160
, pp.
205
222
.
9.
Nikolaidis
,
E.
,
Chen
,
S.
,
Cudney
,
H.
,
Haftka
,
R. T.
, and
Rosca
,
R.
, 2004, “
Comparison of Probabilistic and Possibility Theory-Based Methods for Design Against Catastrophic Failure Under Uncertainty
,”
ASME J. Mech. Des.
1050-0472,
126
(
3
), pp.
386
394
.
10.
Choi
,
K. K.
,
Du
,
L.
,
Youn
,
B. D.
, and
Gorsich
,
D.
, 2005, “
Possibility-Based Design Optimization Method for Design Problems with Both Statistical and Fuzzy Input Data
,”
Sixth World Congress on Structural and Multidisciplinary Optimization
,
Rio de Janeiro, Brazil, May 30–June 3.
11.
Du
,
L.
,
Choi
,
K. K.
,
Youn
,
B. D.
, and
Gorsich
,
D.
, 2006, “
Possibility-Based Design Optimization Method for Design Problems With Both Statistical and Fuzzy Input Data
,”
ASME J. Mech. Des.
1050-0472,
128
(
4
), pp.
925
935
.
12.
Youn
,
B. D.
,
Choi
,
K. K.
, and
Du
,
Liu
, 2005, “
Enriched Performance Measure Approach (PMA+) for Reliability-Based Design Optimization Approaches
,”
AIAA J.
0001-1452,
43
(
4
), pp.
874
884
.
13.
Forouraghi
,
B.
, 2000, “
Worst-Case Tolerance Design and Quality Assurance via Genetic Algorithms
,”
J. Optim. Theory Appl.
0022-3239,
113
(
2
), pp.
251
268
.
14.
Renaud
,
J. E.
, and
Su
,
J.
, 1997, “
Automatic Differentiation in Robust Optimization
,”
AIAA J.
0001-1452, Vol.
35
, No.
6
, pp.
1072
1079
.
15.
Taguchi
,
G.
, 1978, “
Performance Analysis Design
,”
Int. J. Prod. Res.
0020-7543,
16
(
6
), pp.
521
530
.
16.
Parkinson
,
D. B.
, 1997, “
Robust Design by Variability Optimization
,”
Qual. Reliab. Eng. Int
0748-8017,
13
, pp.
97
102
.
17.
Shih
,
C. J.
, and
Tseng
,
T. J.
, 2001, “
Optimal Mechanical Design with Robust Performance by Fuzzy Formulation Strategy
,”
Tamkang J. Sci. Eng.
,
4
(
1
), pp.
71
79
.
18.
Du
,
X.
,
Sudjianto
,
A.
, and
Chen
,
W.
, 2004, “
An Integrated Framework for Optimization Under Uncertainty Using Inverse Reliability Strategy
,”
ASME J. Mech. Des.
1050-0472,
126
(
4
), pp.
561
764
.
19.
Youn
,
B. D.
,
Choi
,
K. K.
, and
Yi
,
K.
, 2005, “
Performance Moment Integration (PMI) Method for Quality Assessment in Reliability-Based Robust Design Optimization
,”
Mech. Based Des. Struct. Mach.
1539-7734,
33
, pp.
185
213
.
20.
Chandra
,
M. J.
, 2001,
Statistical Quality Control
,
CRC Press
, Boca Raton, FL, Chap. 3.
21.
Youn
,
B. D.
,
Choi
,
K. K.
,
Kokkolaras
,
M.
,
Papalambros
,
P. Y.
,
Mourelatos
,
Z.
, and
Gorsich
,
D.
, 2004, “
Techniques to Identify Uncertainty Propagation for Probabilistic Design of Multilevel Systems
,”
10th AIAA/ISSMO Symposium on MAO
, AIAA-2004-4470, Albany, NY, Aug. 30–Sept. 1.
22.
Chan
,
K. Y.
,
Kokkolaras
,
M.
,
Papalambros
,
P.
,
Skerlos
,
S. J.
, and
Mourelatos
,
Z.
, 2004, “
Propagation of Uncertainty in Optimal Design of Multilevel Systems: Piston-Ring/Cylinder-Liner Case Study
,”
Proceedings of SAE World Congress
, Detroit, MI, March 8–11, Paper No. 2004-01-1559.
You do not currently have access to this content.