In product design, it is critical to perform project activities in an appropriate sequence. Otherwise, essential information will not be available when it is needed, and activities that depend on it will proceed using assumptions instead. Later, when the real information is finally available, comparing it with the assumptions made often precipitates a cascade of rework, and thus cost and schedule overruns for the project. Information flow models have been used to sequence the engineering design process to minimize feedback and iteration, i.e., to maximize the availability of real information where assumptions might otherwise be made instead. In this paper, we apply Genetic Algorithms (GAs) to an information flow model to find an optimized sequence for a set of design activities. The optimality of a solution depends on the objective of rearrangement. In an activity sequencing context, objectives vary: reducing iteration/feedback, increasing concurrency, reducing development lead-time and cost, or some combination of these. We adopt a matrix-based representation scheme, the design structure matrix (DSM), for the information flow models. Our tests indicate that certain DSM characteristics (e.g., size, sparseness, and sequencing objective) cause serious problems for simple Genetic Algorithm (SGA) designs. To cope with the SGA deficiency, we investigate the use of a competent GA: the ordering messy GA (OmeGA). Tests confirm the superiority of the OmeGA over a SGA for hard DSM problems. Extensions enhancing the efficiency of both a SGA and the OmeGA, in particular, niching and hybridization with a local search method, are also investigated.

1.
Clark
,
K.
, and
Fujimoto
,
T.
, 1991,
Product Development Performance
,
Harvard Business School Press
, Boston, MA.
2.
Yassine
,
A.
,
Joglekar
,
N.
,
Eppinger
,
S. D.
, and
Whitney
,
D.
, 2001, “
Performance of Coupled Product Development Activities With a Deadline
,”
Manage. Sci.
0025-1909,
47
(
12
), pp.
1605
1620
.
3.
Suh
,
N.
, 1990,
The Principles of Design
,
Oxford University Press
, New York.
4.
Braha
,
D.
, and
Maimon
,
O.
, 1998,
A Mathematical Theory of Design: Foundations, Algorithms and Applications
,
Kluwer Academic Publishers
, Dordrecht.
5.
Pahl
,
G.
, and
Beitz
,
W.
, 1995,
Engineering Design: A Systematic Approach
,
2nd ed.
,
Springer-Verlag
, London.
6.
Ulman
,
D.
, 2003,
The Mechanical Design Process
,
3rd ed.
,
McGraw-Hill
, New York.
7.
Ulrich
,
K.
, and
Eppinger
,
S. D.
, 2004,
Product Design and Development
,
3rd ed.
,
McGraw-Hill
, New York.
8.
Finger
,
S.
, and
Dixon
,
J.
, 1989, “
A Review of Research in Mechanical Design. Part I: Descriptive, Prescriptive, and Computer-Based Models of Design Processes
,”
Res. Eng. Des.
0934-9839,
1
(
1
), pp.
51
67
.
9.
Eppinger
,
S. D.
,
Whitney
,
D. E.
,
Smith
,
R. P.
, and
Gebala
,
D. A.
, 1994, “
A Model-Based Method for Organizing Tasks in Product Development
,”
Res. Eng. Des.
0934-9839,
6
(
1
), pp.
1
13
.
10.
Fricke
,
E.
,
Gebhard
,
B.
,
Negele
,
H.
, and
Igenbergs
,
E.
, 2000, “
Coping With Changes: Causes, Findings, and Strategies
,”
J. Syst. Eng.
0022-4820,
3
(
4
), pp.
169
179
.
11.
Safoutin
,
M. J.
, 2003, “
A Methodology for Empirical Measurement of Iteration in Engineering Design Processes
,” Doctoral thesis (Mech. E.), University of Washington, Seattle, WA.
12.
Cooper
,
K. G.
, 1993, “
The Rework Cycle: Part 1: Why Projects are Mismanaged
,”
IEEE Eng. Manage. Rev.
0360-8581,
21
(
3
), pp.
4
12
.
13.
Browning
,
T. R.
, and
Eppinger
,
S. D.
, 2002, “
Modeling Impacts of Process Architecture on Cost and Schedule Risk in Product Development
,”
IEEE Trans. Eng. Manage.
0018-9391,
49
(
4
), pp.
428
442
.
14.
Osborne
,
S. M.
, 1993, “
Product Development Cycle Time Characterization through Modeling of Process Iteration
,” Master’s thesis (Mgmt), MIT, Cambridge, MA.
15.
Smith
,
R. P.
, and
Eppinger
,
S. D.
, 1997, “
Identifying Controlling Features of Engineering Design Iteration
,”
Manage. Sci.
0025-1909,
43
(
3
), pp.
276
293
.
16.
Safoutin
,
M.
, and
Smith
,
R.
, 1998, “
Classification of Iteration in Engineering Design Processes
,”
Proceedings of ASME Design Engineering Technical Conference (DETC98)
, Atlanta, GA, Sept. 13–16.
17.
Whitney
,
D. E.
, 1990, “
Designing the Design Process
,”
Res. Eng. Des.
0934-9839,
2
(
1
), pp.
3
14
.
18.
Yassine
,
A.
, and
Braha
,
D.
, 2003, “
Four Complex Problems in Concurrent Engineering and the Design Structure Matrix Method
,”
Concurr. Eng. Res. Appl.
1063-293X,
11
(
3
), pp.
165
176
.
19.
Yassine
,
A.
,
Whitney
,
D.
,
Lavine
,
J.
, and
Zambito
,
T.
, 2000. “
Do-It-Right-First-Time (DRFT) Approach to Design Structure Matrix Restructuring
,”
Proceedings of the 12th International Conference on Design Theory and Methodology
,
Baltimore, MD
, September 10–13.
20.
Yassine
,
A.
,
Joglekar
,
N.
,
Eppinger
,
S. D.
, and
Whitney
,
D.
, 2003, “
Information Hiding in Product Development: The Design Churn Effect
,”
Res. Eng. Des.
0934-9839,
14
(
3
), pp.
145
161
.
21.
Kehat
,
E.
, and
Shacham
,
M.
, 1973, “
Chemical Process Simulation Programs-2
,”
Process Technology International
,
18
(
3
), pp.
115
118
.
22.
McCulley
,
C.
, and
Bloebaum
,
C. L.
, 1996, “
A Genetic Tool for Optimal Design Sequencing in Complex Engineering Systems
,”
Struct. Optim.
0934-4373,
12
(
2
), pp.
186
201
.
23.
Altus
,
S. S.
,
Kroo
,
I. M.
, and
Gage
,
P. J.
, 1996, “
A Genetic Algorithm for Scheduling and Decomposition of Multidisciplinary Design Problems
,”
ASME J. Mech. Des.
0161-8458,
118
(
4
), pp.
486
489
.
24.
Kusiak
,
A.
, and
Wang
,
J.
, 1993, “
Decomposition of the Design Process
,”
ASME J. Mech. Des.
0161-8458,
115
(
12
), pp.
687
695
.
25.
Michelena
,
N.
, and
Papalambros
,
P.
, 1995, “
Optimal Model-Based Decomposition of Powertrain System Design
,”
ASME J. Mech. Des.
0161-8458,
117
(
4
), pp.
499
505
.
26.
Chen
,
L.
,
Ding
,
Z.
, and
Li
,
S.
, 2005, “
A Formal Two-Phase Method for Decomposition of Complex Design problems
,”
ASME J. Mech. Des.
0161-8458,
127
(
3
), pp.
184
195
.
27.
Wang
,
B.
, and
Antonsson
,
E.
, 2004, “
Information Measure for Modularity in Engineering Design
,”
Proceedings of the ASME 2004 Design Engineering Technical Conferences
, Salt lake City, Utah, Sept. 28–Oct. 2.
28.
Whitfield
,
R.
,
Smith
,
J.
, and
Duffy
,
A.
, 2002, “
Identifying Component Modules
,”
Seventh International Conference on Artificial Intelligence in Design
, Cambridge, UK, July 15–17.
29.
Sosa
,
M.
,
Eppinger
,
S. D.
, and
Rowles
,
C.
, 2003, “
Identifying Modular and Integrative Systems and Their Impact on Design Team Interactions
,”
ASME J. Mech. Des.
0161-8458,
125
(
6
), pp.
240
252
.
30.
Warfield
,
J. N.
, 1973, “
Binary Matrices in System Modeling
,”
IEEE Trans. Syst. Man Cybern.
0018-9472,
3
(
5
), pp.
441
449
.
31.
Steward
,
D. V.
, 1981,
Systems Analysis and Management: Structure, Strategy and Design
,
Petrocelli Books
, New York.
32.
Tarjan
,
R.
, 1972, “
Depth-First Search and Linear Graph Algorithms
,”
SIAM J. Comput.
0097-5397,
1
(
2
), pp.
146
160
.
33.
Sedgewick
,
R.
, 1992,
Algorithms in C
,
Addison-Wesley
, Reading, MA.
34.
Holland
,
J. H.
, 1975,
Adaptation in Natural and Artificial Systems
,
The University of Michigan Press
, Ann Arbor, MI.
35.
Kirkpatrick
,
S.
,
Gelatt
,
C. D.
, and
Vecchi
,
M. P.
, 1983, “
Optimization by simulated annealing
,”
Science
0036-8075,
220
(
4598
), pp.
671
680
.
36.
Glover
,
F.
, 1989, “
Tabu Search: Part 1
,”
ORSA J. Comput.
0899-1499,
1
(
3
), pp.
190
206
.
37.
Glover
,
F.
, 1990, “
Tabu search: Part 2
,”
ORSA J. Comput.
0899-1499,
2
(
1
), pp.
4
32
.
38.
Dorigo
,
M.
, and
Stützle
,
T.
2004,
Ant Colony Optimization
,
MIT Press
, Cambridge, MA.
39.
Browning
,
T. R.
, 2001, “
Applying the Design Structure Matrix to System Decomposition and Integration Problems: A Review and New Directions
,”
IEEE Trans. Eng. Manage.
0018-9391,
48
(
3
), pp.
292
306
.
40.
Gebala
,
D. A.
, and
Eppinger
,
S. D.
, 1991, “
Methods for Analyzing Design Procedures
,”
Proceedings of the ASME Third International. Conference On Design Theory and Methodology
, Miami, FL, September.
41.
Kusiak
,
A.
, and
Wang
,
J.
, 1993, “
Decomposition of the Design Process
,”
ASME J. Mech. Des.
0161-8458,
115
(
4
), pp.
687
695
.
42.
Todd
,
D.
, 1997,
Multiple Criteria Genetic Algorithms in Engineering Design and Operation
, Ph.D. thesis, Engineering Design Centre, University of Newcastle upon Tyne, UK.
43.
Scott
,
J. A.
, 1998, “
A strategy for Modeling the Design-Development Phase of a Product
,” in Department of Marine Engineering, University of Newcastle upon Tyne, Newcastle upon Tyne.
44.
Whitfield
,
R. I.
,
Duffy
,
A. H. B.
,
Coates
,
G.
, and
Hills
,
W.
, 2003, “
Efficient Process Optimization
,”
Concurr. Eng. Res. Appl.
1063-293X,
11
(
12
), pp.
83
92
.
45.
Whitfield
,
R. I.
,
Duffy
,
A. H. B.
,
Gartzia-Etxabe
,
L. K.
, and
Kortabarria
,
2005, “
Identifying and Evaluating Parallel Design Activities using the Design Structure Matrix
,”
International Conference on Engineering Design 2005
, Melbourne, August 15–18.
46.
Yu
,
T.
,
Yassine
,
A.
, and
Goldberg
,
D.
, “
A Genetic Algorithm for Developing Modular Product Architectures
,”
Proceedings of the ASME 2003 International Design Engineering Technical Conferences
, Chicago, Sept. 2–6.
47.
Whitfield
,
R. I.
,
Smith
,
J. S.
, and
Duffy
,
A. H. B.
, 2002, “
Identifying Component Modules
,”
Seventh International Conference on Artificial Intelligence in Design
, Cambridge, UK, July 15–17.
48.
Baldwin
,
C. Y.
, and
Clark
,
K.
, 2000,
Design Rules: The Power of Modularity
.
MIT Press
, Cambridge.
49.
Rogers
,
J. L.
, 1996, “
DeMAID/GA: An Enhanced Design Manager’s Aid for Intelligent Decomposition
,” NASA TM-11024.
50.
Koopmans
,
T. C.
, and
Beckmann
,
M. J.
, 1957, “
Assignment Problems and the Location of Economic Activities
,”
Econometrica
0012-9682,
25
, pp.
53
76
.
51.
Sahni
,
S.
, and
Gonzalez
,
T.
, 1976, “
P-complete approximation problems
,”
J. ACM
1535-9921,
23
(
3
), pp.
555
565
.
52.
Sastry
,
K.
, and
Goldberg
,
D. E.
, 2001, “
Modeling Tournament Selection With Replacement Using Apparent Added Noise
,”
Intelligent Engineering Systems Through Artificial Neural Networks
, Vol.
11
, pp.
129
134
.
53.
Goldberg
,
D. E.
,
Deb
,
K.
,
Kargupta
,
H.
, and
Harik
,
G.
, 1993, “
Rapid, Accurate Optimization of Difficult Problems Using Fast Messy Genetic Algorithms
,”
Proceedings of the Fifth International Conference on Genetic Algorithms
,
Morgan Kaufmann
, San Mateo, CA, pp.
56
64
.
54.
Goldberg
,
D. E.
, 1989,
Genetic Algorithms in Search, Optimization, and Machine Learning
,
Addision-Wesley
, New York.
55.
Whitley
,
D.
, and
Yoo
,
N.-W.
, 1994, “
Modeling Simple Genetic Algorithms for Permutation Problems
,” in
Foundations of Genetic Algorithms III
,
Morgan Kaufmann
, San Mateo, CA, pp.
163
184
.
56.
Bean
,
J. C.
, 1994, “
Genetic Algorithms and Random Keys for Sequencing and Optimization
,”
ORSA J. Comput.
0899-1499,
6
(
2
), pp.
154
160
.
57.
Bäck
,
T.
, 1994, “
Selective Pressure in Evolutionary Algorithms: A Characterization of Selection Mechanisms
,”
Proceedings of the First IEEE Conference on Evolutionary Computation
, Vol.
1
, pp.
57
62
.
58.
Goldberg
,
D. E.
, 2002,
The Design of Innovation
,
Kluwer Academic Publishers Group
, Norwell, MA.
59.
Baker
,
J. E.
, 1987, “
Reducing bias and inefficiency in the selection algorithm
,”
Proceedings of the Second, International Conference on Genetic Algorithms
,
Morgan Kaufmann
, San Mateo, CA.
60.
Brindle
,
A.
, 1981, “
Genetic Algorithms for Function Optimization
,” Doctoral dissertation, University of Alberta, Edmonton, Canada.
61.
Mühlenbein
,
H.
, 1992, “
How Genetic Algorithms really work: Mutation and hillclimbing
,” in
Parallel Problem Solving from Nature II
,
Springer-Verlag
, Berlin, pp.
15
25
.
62.
Goldberg
,
D. E.
, and
Deb
,
K.
, 1991, “
A Comparative Analysis of Selection Schemes Used in Genetic Algorithms
,” in
Foundations of Genetic Algorithms
,
Morgan Kaufmann
, San Mateo, CA, pp.
69
93
.
63.
Chambers
,
L.
, 2001,
The Practical Handbook of Genetic Algorithms: New Frontiers
.
Chapman and Hall
, Boca Raton, FL.
64.
Dukkipati
,
A.
,
Murty
,
M. N.
, and
Bhatnagar
,
S.
, 2004, “
Cauchy Annealing Schedule: An Annealing Schedule for Boltzmann Selection Scheme in Evolutionary Algorithms
,”
Proceedings of the Congress on Evolutionary Computation (CEC’2004)
,
Portland, OR
, June 19–23, pp.
55
62
.
65.
Mahfoud
,
S. W.
, and
Goldberg
,
D. E.
, 1995, “
Parallel Recombinative Simulated Annealing: A Genetic Algorithm
,”
Parallel Comput.
0167-8191,
21
(
1
), pp.
1
28
.
66.
Murata
,
T.
, and
Ishibuchi
,
H.
, 1994, “
Performance Evaluation of Genetic Algorithms for Flow Shop Scheduling Problems
,”
Proceedings of the First IEEE Conference on Genetic Algorithms and their Applications
,
Orlando, FL
, June 27–29, pp.
812
817
.
67.
Goldberg
,
D. E.
,
Deb
,
K.
, and
Thierens
,
D.
, 1993, “
Toward a Better Understanding of Mixing in Genetic Algorithms
,”
Journal of the Society of Instrument and Control Engineers
,
32
(
1
), pp.
10
16
.
68.
Bäck
,
T.
, 1995, “
Generalized Convergence Models for Tournament- and (μ-l)-Selection
,”
Proceedings of the Sixth International Conference on Genetic Algorithms
,
Morgan Kaufmann
, San Mateo, CA, pp.
2
8
.
69.
Thierens
,
D.
, 1995, “
Mixing in Genetic Algorithms
,” Doctoral dissertation, Katholieke Universiteit Leuven, Belgium.
70.
De Jong
,
K. A.
, 1975,
An Analysis of the Behavior of a Class of Genetic Adaptive Systems
, Doctoral dissertation, University of Michigan.
71.
Miller
,
B. L.
, and
Goldberg
,
D. E.
, 1995, “
Genetic Algorithms, Tournament Selection, and the Varying Effects of Noise
,”
Evol. Comput.
1063-6560,
4
(
2
), pp.
113
131
.
72.
Goldberg
,
D. E.
, and
Segrest
,
P.
, 1987, “
Finite markov chain analysis of genetic algorithms
,”
Proceedings of the Second International Conference on Genetic Algorithms
, Morgan Kaufmann, San Mateo, CA, pp.
1
8
.
73.
Grefenstette
,
J. J.
, 1986, “
Optimization of Control Parameters for Genetic Algorithms
,”
Int. J. Numer. Methods Fluids
0271-2091,
16
(
1
), pp.
122
128
.
74.
Schaffer
,
J. D.
,
Caruana
,
R. A.
,
Eshelman
,
L. J.
, and
Das
,
R.
, 1989, “
A Study of Control Parameters Affecting Online Performance of Genetic Algorithms for Function Optimization
,”
Proceedings of the Third International Conference on Genetic Algorithms
, Morgan Kaufmann, San Mateo, CA, pp.
51
60
.
75.
Bremermann
,
H. J.
, 1962, “
Optimization Through Evolution and Recombination
,” in
Self-Organizing Systems
,
Spartan Books
, Washington, D.C.
76.
Syswerda
,
G.
, 1991, “
Schedule Optimization Using Genetic Algorithms
,” in
Handbook of Genetic Algorithms
.
Van Nostrand Reinhold
, New York.
77.
Cantu-Paz
,
E.
, 2000,
Efficient and Accurate Parallel Genetic Algorithms
,
Kluwer Academic
, Boston.
78.
Gorges-Schleuter
,
M.
, 1989, “
Asparagos: An Asynchronous Parallel Genetic Optimization Strategy
,”
Proceedings of the Third International Conference on Genetic Algorithms
,
Morgan Kaufmann
, San Mateo, CA.
79.
Grefenstette
,
J. J.
, 1981, “
Parallel Adaptive Algorithms for Function Optimization
,” (Tech. Rep. No. CS-81-19), Vanderbilt University, Computer Science Department, Nashville, TN.
80.
Tanese
,
R.
, 1989, “
Distributed Genetic Algorithms for Function Optimization
,” Doctoral dissertation, University of Michigan.
81.
Fleurant
,
C.
, and
Ferland
,
J. A.
, 1994, “
Genetic Hybrids for the Quadratic Assignment Problem
,” in
DIMACS Series in Discrete Mathematics and Theoretical Computer Science
,
Vol.
16
, pp.
173
187
.
82.
Hinton
,
G. E.
, and
Nowlan
,
S. J.
, 1987, “
How Learning Can Guide Evolution
,”
Complex Syst.
0891-2513,
1
(
3
), pp.
495
502
.
83.
Merz
,
P.
, and
Freisleben
,
B.
, 1997, “
A Genetic Local Search Approach to the Quadratic Assignment Problem
,”
Proceedings of the Seventh International Conference on Genetic Algorithms
,
Morgan Kaufmann
, San Mateo, CA, pp.
465
472
.
84.
Goldberg
,
D. E.
, 1999, “
Using Time Efficiently: Genetic-Evolutionary Algorithms and the Continuation Problem
,” IlliGAL Report No. 99002, University of Illinois at Urbana-Champaign, Il.
85.
Srivastava
,
R.
, and
Goldberg
,
D. E.
, 2001, “
Verification of the Theory of Genetic and Evolutionary Continuation
,”
Proceedings of the Genetic and Evolutionary Computation Conference
,
San Francisco, CA
, July 7–11, pp.
623
630
.
86.
El-Beltagy
,
M.
,
Nair
,
P.
, and
Keane
,
A.
, 1999, “
Metamodeling Techniques for Evolutionary Optimization of Computationally Expensive Problems: Promises and Limitations
,”
Proceedings of the Genetic and Evolutionary Computation Conference
,
Orlando, FL
, July 13–17, pp.
196
203
.
87.
Jin
,
Y.
,
Olhofer
,
M.
, and
Sendhoff
,
B.
, 2000, “
On Evolutionary Optimization With Approximate Fitness Functions
,”
Proceedings of the Genetic and Evolutionary Computation Conference
,
Las Vegas, NV
, July 10–12, pp.
786
792
.
88.
Ratle
,
A.
, 1998, “
Accelerating the Convergence of Evolutionary Algorithms by Fitness Landscape Approximation
,” in
Parallel Problem Solving from Nature V
,
Springer-Verlag
, Berlin, pp.
87
96
.
89.
Sastry
,
K.
,
Goldberg
,
D. E.
, and
Pelikan
,
M.
, 2001, “
Don’t Evaluate, Inherit
,”
Proceedings of the Genetic and Evolutionary Computation Conference
,
San Francisco, CA
, July 7–11.
90.
Mahfoud
,
S. W.
, 1995, “
Niching Methods for Genetic Algorithms
,” Doctoral dissertation, University of Illinois at Urbana - Champaign.
91.
Taillard
,
E. D.
, 1991, “
Robust Taboo Search for the Quadratic Assignment Problem
,”
Parallel Comput.
0167-8191,
17
, pp.
443
455
.
92.
Ahuja
,
R. K.
,
Orlin
,
J. B.
, and
Tivari
,
A.
, 1995, “
A Greedy Genetic Algorithm for the Quadratic Assignment Problem
,” Working paper 3826-95, Sloan School of Management, MIT, Cambridge, MA.
93.
Burkard
,
R. E.
, and
Rendl
,
F.
, 1984, “
A Thermodynamically Motivated Simulation Procedure for Combinatorial Optimization Problems
,”
Eur. J. Oper. Res.
0377-2217,
17
(
2
), pp.
169
174
.
94.
Stützle
,
T.
, and
Dorigo
,
M.
, 2002, “
Local Search and Metaheuristics for the Quadratic Assignment Problem
,” Unpublished paper.
95.
Knjazew
,
D.
, 2002, OmeGA: A Competent Genetic Algorithm for Solving Permutation and Scheduling Problems. Kluwer Academic Publishers Group, Norwell, MA.
96.
Goldberg
,
D. E.
,
Korb
,
B.
, and
Deb
,
K.
, 1989, “
Messy Genetic Algorithms: Motivation, Analysis, and First Results
,”
Complex Syst.
0891-2513,
3
(
5
), pp.
493
530
.
97.
Goldberg
,
D. E.
,
Deb
,
K.
, and
Korb
,
B.
, 1990, “
Messy Genetic Algorithms Revisited: Studies in Mixed Size and Scale
,”
Complex Syst.
0891-2513,
4
(
4
), pp.
415
444
.
98.
Goldberg
,
D. E.
, and
Rudnick
,
M.
, 1991, “
Genetic Algorithms and the Variance of Fitness
,”
Complex Syst.
0891-2513,
5
(
3
), pp.
265
278
.
99.
Goldberg
,
D. E.
,
Sastry
,
K.
, and
Latoza
,
T.
, 2001, “
On the supply of building blocks
,” Evol. Comput. Proceedings of the Genetic and Evolutionary Computation Conference,
San Francisco, CA
, July 7–11.
100.
Harik
,
G.
,
Cantu-Paz
,
E.
,
Goldberg
,
D. E.
, and
Miller
,
B. L.
, 1999, “
The Gambler’s Ruin Problem, Genetic Algorithms, and the Sizing of Populations
,”
Evol. Comput.
1063-6560,
7
(
3
), pp.
231
253
.
101.
Kargrupta
,
H.
,
Deb
,
K.
, and
Goldberg
,
D. E.
, 1992, “
Ordering genetic algorithms and deception
,” in
Parallel Problems Solving from Nature II
,
Springer-Verlag
, Berlin, pp.
47
56
.
102.
van Hoyweghen
,
C.
,
Naudts
,
B.
, and
Goldberg
,
D. E.
, 2002, “
Spin-Flip Symmetry and Synchronization
,”
Evol. Comput.
1063-6560,
10
(
4
), pp.
317
344
.
103.
Oei
,
C. K.
,
Goldberg
,
D. E.
, and
Chang
,
D. J.
, 1994, “
Tournament Selection, Niching, and the Preservation of Diversity
,” IlliGAL Report No. 91011, University of Illinois at Urbana-Champaign, Il.
104.
Pelikan
,
M.
,
Goldberg
,
D. E.
, and
Cantu-Paz
,
E.
, 1999, “
BOA: The Bayesian Optimization Algorithm
,”
Proceedings of the Genetic and Evolutionary Computation Conference
,
Orlando, FL
, July 13–17, pp.
525
532
.
You do not currently have access to this content.