We propose a decision-based approach for reliability design when there is insufficient information for constructing probabilistic models. The approach enables a designer to perform reliability-cost trade-offs and to assess the importance of variability and epistemic uncertainty. A method for decision under epistemic uncertainty is first presented and justified by presenting axioms on a decision maker’s (DM’s) preferences and by assuming that the DM’s goal is to find the most immune act (in terms of having undesirable consequences) to deviations of the state of the world from an expected state. Thus, the philosophy of the method is similar to that of robust reliability (Ben Haim, Y., 1996, Robust Reliability in the Mechanical Sciences, Springer-Verlag, Berlin). A new formulation of reliability design problems is proposed based on the above decision method and is compared to two reliability-based design optimization formulations that minimize cost given a maximum acceptable failure probability or maximize expected utility. The method is demonstrated on a decision where a designer has to choose between two materials for a structure.

1.
Frangopol
,
D. M.
, and
Maute
,
K.
, 2004, “
Reliability-Based Optimization of Civil and Aerospace Structural Systems
,”
Engineering Design Reliability Handbook
,
Nikolaidis
,
E.
,
Ghiocel
,
D. M.
, and
Singhal
,
S.
, eds.,
CRC Press
,
Boca Raton
, pp.
24
-1–24-
32
.
2.
Chiralaksanakul
,
A.
, and
Mahadevan
,
S.
, 2005, “
First-Order Approximation Methods in Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
1050-0472,
127
(
5
), pp.
851
857
.
3.
Kokkolaras
,
M.
,
Mourelatos
,
Z. P.
, and
Papalambros
,
P. Y.
, 2006, “
Design Optimization of Hierarchically Decomposed Multilevel Systems Under Uncertainty
,”
ASME J. Mech. Des.
1050-0472,
128
(
2
), pp.
503
508
.
4.
Liu
,
H.
,
Chen
,
W.
, and
Sudjianto
,
A.
, 2006, “
Relative Entropy Method for Probabilistic Sensitivity Analysis in Engineering Design
,”
ASME J. Mech. Des.
1050-0472,
128
(
2
), pp.
326
336
.
5.
Savage
,
L.
, 1954,
Foundations of Statistics
,
Wiley
,
New York
.
6.
Winkler
,
R. L.
, 1972,
Introduction to Bayesian Inference and Decision
,
Holt
,
New York
.
7.
von Neumann
,
J.
, and
Morgenstern
,
O.
, 1947,
Theory of Games and Economic Behavior
, 2nd ed.,
Princeton University Press
,
Princeton
.
8.
Kahneman
,
D.
, and
Tvesky
,
A.
, 1979, “
Prospect Theory: an Analysis of Decision Under Risk
,”
Econometrica
0012-9682,
47
(
2
), pp.
263
291
.
9.
Ellsberg
,
D.
, 1961, “
Risk Ambiguity and the Savage Axioms
,”
Stahlbau
0038-9145,
75
, pp.
643
669
.
10.
Einhorn
,
H.
, and
Hogarth
,
R. M.
, 1985, “
Ambiguity and Uncertainty in Probabilistic Influence
,”
Psychol. Rev.
0033-295X,
92
, pp.
433
461
.
11.
Muhanna
,
R. L.
, and
Mullen
,
R. L.
, 2001, “
Uncertainty in Mechanics Problems—Interval-Based Approach
,”
J. Eng. Mech.
0733-9399,
127
(
6
), pp.
557
566
.
12.
Dubois
,
D.
, and
Prade
,
H.
, 1988,
Possibility Theory
,
Plenum Press
,
New York
13.
Joslyn
,
C.
, and
Booker
,
J. M.
, 2004, Generalized Information Theory for Engineering Modeling and Simulation,
Engineering Design Reliability Handbook
,
Nikolaidis
,
E.
,
Ghiocel
,
D. M.
, and
Singhal
,
S.
, eds.,
CRC Press
,
Boca Raton
, pp.
9
-1–9-
40
.
14.
Cooke
,
R.
, 2004, “
The Anatomy of the Squizzel: The Role of Operational Definitions in Representing Uncertainty
,”
Reliab. Eng. Syst. Saf.
0951-8320,
85
(
1–3
), pp.
313
319
.
15.
Dubois
,
D.
,
Prade
,
H.
, and
Sabbadin
,
R.
, 2001, “
Decision Theoretic Foundations of Quantitative Possibility Theory
,”
Eur. J. Oper. Res.
0377-2217,
128
, pp.
459
478
.
16.
Zimmermann
,
H.-J.
, 1996,
Fuzzy Set Theory and its Applications
,
Kluwer
,
Drodrecht
.
17.
Buckley
,
J. J.
, 1988, “
Possibility and Necessity in Optimization
,”
Fuzzy Sets Syst.
0165-0114,
25
, pp.
1
13
.
18.
Otto
,
K. N.
, and
Antonsson
,
E. K.
, 1994, “
Design Parameter Selection in the Presence of Noise
,”
Res. Eng. Des.
0934-9839,
6
(
4
), pp.
234
246
.
19.
Ben-Haim
,
Y.
, 1996,
Robust Reliability in the Mechanical Sciences
,
Springer-Verlag
,
Berlin
.
20.
French
,
S.
, 1986,
Decision Theory: An Introduction to the Mathematics of Rationality
,
Horwood
,
Chichester
.
21.
Klir
,
G.
, and
Yuan
,
G.
, 1995,
Fuzzy Sets and Fuzzy Logic
,
Prentice Hall
,
Englewood Cliffs, NJ
.
22.
Wald
,
A.
, 1950,
Statistical Decision Functions
,
Wiley
,
New York
.
23.
Nikolaidis
,
E.
,
Chen
,
S.
,
Cudney
,
H.
,
Haftka
,
R. T.
, and
Rosca
,
R.
, 2004, “
Comparison of Probability and Possibility for Design Against Catastrophic Failure Under Uncertainty
,”
ASME J. Mech. Des.
1050-0472,
126
, pp.
386
394
.
24.
Scott
,
M. J.
, and
Antonsson
,
E. K.
, 1998, “
Aggregation Functions for Engineering Design Trade-offs
,”
Fuzzy Sets Syst.
0165-0114,
99
(
2
), pp.
253
264
.
You do not currently have access to this content.