This paper presents a numerical method able to compute all possible configurations of planar linkages. The procedure is applicable to rigid linkages (i.e., those that can only adopt a finite number of configurations) and to mobile ones (i.e., those that exhibit a continuum of possible configurations). The method is based on the fact that this problem can be reduced to finding the roots of a polynomial system of linear, quadratic, and hyperbolic equations, which is here tackled with a new strategy exploiting its structure. The method is conceptually simple and easy to implement, yet it provides solutions of the desired accuracy in short computation times. Experiments are included that show its performance on the double butterfly linkage and on larger linkages formed by the concatenation of basic patterns.

1.
Merlet
,
J.-P.
, 2000,
Parallel Robots
,
Springer-Verlag
, Berlin.
2.
Yakey
,
J. H.
,
LaValle
,
S. M.
, and
Kavraki
,
L. E.
, 2001, “
Randomized Path Planning for Linkages with Closed Kinematic Chains
,”
IEEE Trans. Rob. Autom.
1042-296X,
17
(
6
), pp.
951
958
.
3.
Porta
,
J. M.
, 2005, “
CuikSlam: A Kinematics-Based Approach to SLAM
,”
Proc. of 2006 IEEE International Conference on Robotics and Automation
,
IEEE
, New York, pp.
2436
2442
.
5.
Borcea
,
C.
, and
Streinu
,
I.
, 2004, “
The Number of Embeddings of a Minimally-Rigid Graph
,”
Discrete Comput. Geom.
0179-5376,
31
(
2
),
287
303
.
6.
M. F.
Thorpe
and
P. M.
Duxbury
, eds., 1999,
Rigidity Theory and Applications
,
Kluwer
, Dordrecht.
7.
Dhingra
,
A. K.
,
Almadi
,
A. N.
, and
Kohli
,
D.
, 2001, “
Closed-Form Displacement and Coupler Curve Analysis of Planar Multi-Loop Mechanisms Using Gröbner Bases
,”
Mech. Mach. Theory
0094-114X,
36
,
273
298
.
8.
Nielsen
,
J.
, and
Roth
,
B.
, 1999, “
Solving the Input/Output Problem for Planar Mechanisms
,”
ASME J. Mech. Des.
1050-0472,
121
(
2
), pp.
206
211
.
9.
Wampler
,
C. W.
, 2001, “
Solving the Kinematics of Planar Mechanisms by Dixon’s Determinant and a Complex Plane Formulation
,”
ASME J. Mech. Des.
1050-0472,
123
(
3
), pp.
382
387
.
10.
Verschelde
,
J.
, 1999, “
Algorithm 795: PHCpack: A General-Purpose Solver for Polynomial Systems by Homotopy Continuation
,”
ACM Trans. Math. Softw.
0098-3500,
25
(
2
), pp.
251
276
.
11.
Sommese
,
A. J.
,
Verschelde
,
J.
, and
Wampler
,
C. W.
, 2004, “
Advances in Polynomial Continuation for Solving Problems in Kinematics
,”
ASME J. Mech. Des.
1050-0472,
126
(
2
), pp.
262
268
.
12.
Rao
,
R. S.
,
Asaithambi
,
A.
, and
Agrawal
,
S. K.
, 1998, “
Inverse Kinematic Solution of Robot Manipulators Using Interval Analysis
,”
ASME J. Mech. Des.
1050-0472,
120
(
1
), pp.
147
150
.
13.
Didrit
,
O.
,
Petitot
,
M.
, and
Walter
,
E.
, 1998, “
Guaranteed Solution of Direct Kinematic Problems for General Configurations of Parallel Manipulators
,”
IEEE Trans. Rob. Autom.
1042-296X,
14
(
2
), pp.
259
266
.
14.
Castellet
,
A.
, and
Thomas
,
F.
, 1998, “
An Algorithm for the Solution of Inverse Kinematics Problems Based on an Interval Method
,”
Advances in Robot Kinematics
,
M.
Husty
and
J.
Lenarcic
, eds.,
Kluwer
, Dordrecht, pp.
393
403
.
15.
Lee
,
E.
,
Mavroidis
,
C.
, and
Merlet
,
J.-P.
, 2004, “
Five Precision Points Synthesis of Spatial RRR Manipulators Using Interval Analysis
,”
ASME J. Mech. Des.
1050-0472,
126
(
5
), pp.
842
849
.
16.
Merlet
,
J.-P.
, and
Daney
,
D.
, 2001, “
A Formal Numerical Approach to Determine the Presence of Singularity Within the Workspace of a Parallel Robot
,”
Proc. of 2nd Workshop on Computational Kinematics
,
C. C.
Iurascu
and
F. C.
Park
, eds.,
Seoul National University Press
,
Seoul
, pp.
167
176
.
17.
Merlet
,
J.-P.
, 2001, “
An Improved Design Algorithm Based on Interval Analysis for Parallel Manipulator with Specified Workspace
,”
Proc. of IEEE Int. Conf. on Robotics and Automation
, Seoul, May,
IEEE
, New York, Vol.
2
, pp.
1289
1294
.
18.
Sherbrooke
,
E.
, and
Patrikalakis
,
N.
, 1993, “
Computation of the Solutions of Nonlinear Polynomial Systems
,”
Comput. Aided Geom. Des.
0167-8396,
10
(
5
), pp.
379
405
.
19.
Chartrand
,
G.
, and
Lesniak
,
L.
, 1996,
Graphs and Digraphs
,
3rd ed.
,
Chapman and Hall
, New York.
20.
Laman
,
G.
, 1970, “
On Graphs and Rigidity of Plane Skeletal Structures
,”
J. Eng. Math.
0022-0833,
4
,
331
340
.
21.
Waldron
,
K. J.
, and
Sreenivasen
,
S. V.
, 1996, “
A Study of the Position Problem for Multi-Circuit Mechanisms by Way of Example of the Double Butterfly Linkage
,”
ASME J. Mech. Des.
1050-0472,
118
, pp.
390
395
.
22.
Makhorin
,
A.
,
GLPK—The GNU linear programming toolkit
, http://www.gnu.org/software/glpkhttp://www.gnu.org/software/glpk.
24.
Pennock
,
G.
, and
Hasan
,
A.
, 2000, “
A Polynomial Equation for a Coupler Curve of the Double Butterfly Linkage
,”
ASME J. Mech. Des.
1050-0472,
124
(
1
), pp.
39
246
.
25.
Merlet
,
J.-P.
, 1996, “
Direct Kinematics of Planar Parallel Manipulators
,”
Proc. of 1996 IEEE International Conference on Robotics and Automation
,
IEEE
, New York, pp.
3744
3749
.
26.
Morgan
,
A.
, and
Shapiro
,
V.
, 1987, “
Box-Bisection for Solving Second-Degree Systems and the Problem of Clustering
,”
ACM Trans. Math. Softw.
0098-3500,
13
(
2
), pp.
152
167
.
You do not currently have access to this content.