Closed-form direct and inverse kinematics of a new three-degree-of-freedom (DOF) parallel manipulator with inextensible limbs and base-mounted actuators are presented. The manipulator has higher resolution and precision than the existing three-DOF mechanisms with extensible limbs. Since all of the manipulator actuators are base mounted, higher payload capacity, smaller actuator sizes, and lower power dissipation can be obtained. The manipulator is suitable for alignment applications where only tip, tilt, and piston motions are significant. The direct kinematics of the manipulator is reduced to solving an eighth-degree polynomial in the square of the tangent of the half-angle between one of the limbs and the base plane. Hence, there are at most 16 assembly configurations for the manipulator. In addition, it is shown that the 16 solutions are eight pairs of reflected configurations with respect to the base plane. Numerical examples for the direct and inverse kinematics of the manipulator are also presented.

1.
Stewart
,
D.
, 1965, “
A Platform With Six Degrees of Freedom
,”
Proc. Inst. Mech. Eng.
0020-3483,
180
, pp.
371
386
.
2.
Waldron
,
K. J.
, and
Hunt
,
K. H.
, 1987, “
Series-Parallel Dualities in Actively Coordinated Mechanisms
,”
Proc. of 4th Int. Symp. on Robotic Research
,
MIT Press
,
Cambridge, MA
, pp.
175
181
.
3.
Griffis
,
M.
, and
Duffy
,
J.
, 1989, “
A Forward Displacement Analysis of a Class of Stewart Platforms
,”
J. Rob. Syst.
0741-2223,
6
, pp.
703
720
.
4.
Nanua
,
P.
,
Waldron
,
K. J.
, and
Murthy
,
V.
, 1990, “
Direct Kinematic Solution of a Stewart Platform
,”
IEEE Trans. Rob. Autom.
1042-296X,
6
, pp.
438
444
.
5.
Akcali
,
I. D.
, and
Mutlu
,
H.
, 2006, “
A Novel Approach in the Direct Kinematics of Stewart Platform Mechanisms With Planar Platforms
,”
ASME J. Mech. Des.
1050-0472,
128
, pp.
252
263
.
6.
Parenti-Castelli
,
V.
, and
Innocenti
,
C.
, 1990, “
Forward Displacement Analysis of Parallel Mechanisms: Closed Form Solution of PRR-3S and PPR-3S Structures
,”
Proc. of 21st Biennial Mechanisms Conference
,
ASME
,
New York
, DE-Vol.,
25
, pp.
111
116
.
7.
Raghavan
,
M.
, 1993, “
The Stewart Platform of General Geometry Has 40 Configurations
,”
ASME J. Mech. Des.
1050-0472,
115
, pp.
277
282
.
8.
Tahmasebi
,
F.
, and
Tsai
,
L. W.
, 1994, “
Closed-Form Direct Kinematics Solution of a New Parallel Minimanipulator
,”
ASME J. Mech. Des.
1050-0472,
116
, pp.
1141
1147
.
9.
Tahmasebi
,
F.
, and
Tsai
,
L. W.
, 1995, “
On the Stiffness of a Novel Six Degree-of-Freedom Parallel Minimanipulator
,”
J. Rob. Syst.
0741-2223,
12
, pp.
845
856
.
10.
Ben-Horin
,
R.
, and
Shoham
,
M.
, 1996, “
Construction of a New Type of a Six-Degrees-of-Freedom Parallel Manipulator With Three Planarly Actuated Links
,”
Proc. of ASME Design Conference
, ASME, New York, ASME Paper No. 96-DETC∕MECH-1561.
11.
Innocenti
,
C.
, and
Wenger
,
P.
, 2006, “
Position Analysis of the RRP-3(SS) Multi-Loop Spatial Structure
,”
ASME J. Mech. Des.
1050-0472,
128
, pp.
272
278
.
12.
Merlet
,
J.-P.
, 1997, “
Miniature In-Parallel Positioning System MIPS for Minimally Invasive Surgery
,”
Proc. of the World Congress on Medical Physics and Biomedical Engineering
, Nice, France, pp.
14
19
.
13.
Merlet
,
J.-P.
, 2000,
Parallel Robots
,
Kluwer
,
Drodrecht
, pp.
31
54
.
14.
Gosselin
,
C.
, and
Angeles
,
J.
, 1988, “
The Optimum Kinematic Design of a Planar Three-Degree-of-Freedom Parallel Manipulator
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
110
, pp.
35
41
.
15.
Gosselin
,
C.
, and
Angeles
,
J.
, 1989, “
The Optimum Kinematic Design of a Spherical Three-Degree-of-Freedom Parallel Manipulator
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
111
, pp.
202
207
.
16.
Tsai
,
L. W.
, 1996, “
Kinematics of a Three-DOF Platform Manipulator With Three Extensible Limbs
,”
Recent Advances in Robot Kinematics
,
Lenarcic
,
J.
, and
Parenti-Castelli
,
V.
, ed.
Kluwer
,
Dordrecht
, pp.
401
410
.
17.
Vertechy
,
R.
, and
Parenti-Castelli
,
V.
, 2006, “
Real-Time Direct Position Analysis of Parallel Spherical Wrists by Using Extra Sensors
,”
ASME J. Mech. Des.
1050-0472,
128
, pp.
288
294
.
18.
Ceccarelli
,
M.
, 2004,
Fundamentals of Mechanics of Robotic Manipulation
,
Kluwer
,
Dordrecht
, pp.
202
240
.
19.
Kong
,
X.
, and
Gosselin
,
C.
, 2005, “
Type Synthesis of 3-DOF PPR-Equivalent Parallel Manipulators Based on Screw Theory and the Concept of Virtual Chain
,”
ASME J. Mech. Des.
1050-0472,
127
, pp.
1113
1121
.
20.
Hess-Coelho
,
T.
, 2006, “
Topological Synthesis of a Parallel Wrist Mechanism
,”
ASME J. Mech. Des.
1050-0472,
128
, pp.
230
235
.
21.
Huang
,
Z.
, and
Wang
,
J.
, 2002, “
Analysis of Instantaneous Motions of Deficient-Rank 3-RPS Parallel Manipulators
,”
Mech. Mach. Theory
0094-114X,
37
, pp.
229
240
.
22.
Fang
,
Y.
, and
Huang
,
Z.
, 1997, “
Kinematics of a Three-Degree-of-Freedom In-Parallel Actuated Manipulator Mechanism
,”
Mech. Mach. Theory
0094-114X,
32
, pp.
789
796
.
23.
Tsai
,
M. S.
,
Shiau
,
T. N.
,
Tsai
,
Y. J.
, and
Chang
,
T. H.
, 2003, “
Direct Kinematics Analysis of a 3-PRS Parallel Mechanism
,”
Mech. Mach. Theory
0094-114X,
38
, pp.
71
83
.
24.
Di Gregorio
,
R.
, 2004, “
The 3-RRS Wrist:A New, Simple, and Non-Overconstrained Spherical Parallel Manipulator
,”
Mech. Mach. Theory
0094-114X,
126
, pp.
850
855
.
25.
Tsai
,
L. W.
, 1999,
Robot Analysis
,
Wiley
,
New York
, pp.
32
39
.
26.
Salmon
,
G.
, 1964,
Lessons Introductory to the Modern Higher Algebra
, 5th ed.,
Chelsea
,
New York
, pp.
76
83
.
27.
Macsyma
, 1995,
Reference Manual
, 15th ed.,
Macsyma, Inc.
,
Arlington, MA
.
28.
Tahmasebi
,
F.
, 2004, “
Direct and Inverse Kinematics of a New Tip-Tilt-Piston Parallel Manipulator
,”
NASA Technical Memorandum No. 2004-212763
,
NASA∕GSFC
, Greenbelt, MD.
29.
Roth
,
B.
, 1993, “
Computation in Kinematics
,”
Computational Kinematics
,
J.
Angeles
,
G.
Hommel
, and
P.
Kovacs
, eds.,
Kluwer
,
Dordrecht
, pp.
3
14
.
You do not currently have access to this content.