Though pattern search algorithms have been successfully applied to three-dimensional (3D) component layout problems, a number of unanswered questions remain regarding their parameter tuning. One such question is the scheduling of patterns in the search. Current pattern search methods treat all patterns similarly and all of them are active from the beginning to the end of the search. Observations from 3D component layout motivate the question whether patterns should be introduced in some different order during the search. This paper presents a novel method for scheduling patterns that is inspired by observations from 3D component layout problems. The new method introduces patterns into the search in the decreasing order of a priori expectation of the objective function change due to the patterns. Pattern search algorithms based on the new pattern schedule run 30% faster on average than conventional pattern search based algorithms on 3D component layout problems and general 2D multimodal surface minimization problems. However since determining the expected change in objective function value due to the patterns is expensive, we explore approximations using domain information.

1.
Cagan
,
J.
,
Shimada
,
K.
, and
Yin
,
S.
, 2002, “
A Survey of Computational Approaches to Three-Dimensional Layout Problems
,”
CAD
0010-4485,
34
(
8
), pp.
597
611
.
2.
Szykman
,
S.
, and
Cagan
,
J.
, 1997, “
Constrained Three Dimensional Component Layout Using Simulated Annealing
,”
ASME J. Mech. Des.
1050-0472,
119
(
1
), pp.
28
35
.
3.
Yin
,
S.
, and
Cagan
,
J.
, 2000, “
An Extended Pattern Search Algorithm for Three-Dimensional Component Layout
,”
ASME J. Mech. Des.
1050-0472,
122
(
1
), pp.
102
108
.
4.
Ding
,
Q.
, and
Cagan
,
J.
, 2003, “
Automated Trunk Packing With Extended Pattern Seach
,” in
Proceedings of the 2003 SAE Technical Conferences
,
Detroit, MI
.
5.
Yin
,
S.
,
Cagan
,
J.
, and
Hodges
,
P.
, 2004, “
Layout Optimization of Shapeable Components With Extended Pattern Search Applied to Transmission Design
,”
J. Mech. Des.
1050-0472,
126
(
1
), pp.
188
190
.
6.
Yin
,
S.
, 2000, “
A Computational Framework for Automated Product Layout Synthesis Based on an Extended Pattern Search Algorithm
,” Ph.D. thesis Carnegie Mellon University, Pittsburgh, p.
144
.
7.
Torczon
,
V.
, and
Trosset
,
M.
, 1997, “
From Evolutionary Operation to Parallel Direct Search: Pattern Search Algorithms for Numerical Optimization
,”
Comput. Sci. Statist.
,
29
(
1
), pp.
396
401
.
8.
Aladahalli
,
C.
,
Cagan
,
J.
, and
Shimada
,
K.
, 2007, “
Objective Function Based Pattern Search—An Implementation for 3D Component Layout
,”
ASME J. Mech. Des.
1050-0472,
129
, March.
9.
Cagan
,
J.
,
Degentesh
,
D.
, and
Yin
,
S.
, 1998, “
A Simulated Annealing-Based Algorithm Using Hierarchical Models for General Three-Dimensional Component Layout
,”
CAD
0010-4485,
30
(
10
), pp.
781
790
.
10.
Kawakami
,
T.
,
Minagawa
,
M.
, and
Kakazu
,
Y.
, 1991, “
Auto Tuning of 3-D Packing Rules using Genetic Algorithms
,”
Proceedings of the IEEE/RSJ International Workshop on Intelligent Robots and Systems IROS
.
11.
Corcoran
,
A. L.
, III
, and
Wainwright
,
R. L.
, 1992, “
A Genetic Algorithm for Packing in Three Dimensions
,
Applied Computing: Technological Challenges of the 1990’s—Proceedings of the 1992 ACM/SIGAPP Symposium on Applied Computing
,
Kansas City, KS
.
12.
Wodziack
,
J.
, and
Fadel
,
G. M.
, 1996, “
Bi-Objective Optimization of Components Packing Using Genetic Algorithm
,”
Proceedings NASA/AIAA/ISSMO Multidisciplinary Design and Optimization Conference
,
Seattle, WA
.
13.
Ikonen
,
I.
,
Biles
,
W.
,
Kumar
,
A.
,
Ragade
,
R. K.
, and
Wissel
,
J. C.
, 1997, “
A Genetic Algorithm for Packing Three-Dimensional Non-Convex Objects Having Cavities and Holes
,”
Proceedings of 7th International Conference on Genetic Algorithms
,
Michigan State University
,
East Lansing, MI
.
14.
Szykman
,
S.
, and
Cagan
,
J.
, 1995, “
A Simulated Annealing Approach to Three-Dimensional Component Packing
,”
ASME J. Mech. Des.
1050-0472,
117
(
2A
), pp.
308
314
.
15.
Szykman
,
S.
, and
Cagan
,
J.
, 1996, “
Synthesis of Optimal Non-Orthogonal Routes
,”
ASME J. Mech. Des.
1050-0472,
118
(
3
), pp.
419
424
.
16.
Szykman
,
S.
,
Cagan
,
J.
, and
Weisser
,
P.
, 1998, “
An Integrated Approach to Optimal Three Dimensional Layout and Routing
,”
ASME J. Mech. Des.
1050-0472,
120
(
3
), pp.
510
512
.
17.
Dickinson
,
J. K.
, and
Knopf
,
G. K.
, 1998, “
Serial Packing of Arbitrary 3D Objects for Optimizing Layered Manufacturing
,”
Proceeding of 17th SPIE Conference on Intelligent Robots and Computer Vision Algorithms, Techniques, and Active Vision
,
Boston, Massachusetts
.
18.
Fermi
,
E.
, and
Metropolis
,
N.
, 1952,
Numerical Solution of Minimum Problem
,
Los Alamos National Laboratory
,
Los Alamos, NM
, p.
15
.
19.
Hooke
,
R.
, and
Jeeves
,
T. A.
, 1961, “
Direct Search Solution of Numerical and Statistical Problems
,”
J. Assoc. Comput. Mach.
0004-5411,
8
(
2
), pp.
212
229
.
20.
Box
,
G. E. P.
, 1957, “
Evolutionary Operation: A Method for Increasing Industrial Productivity
,”
Appl. Stat.
0285-0370,
6
, pp.
81
101
.
21.
Torczon
,
V.
, 1997, “
On the Convergence of Pattern Search Algorithms
,”
SIAM J. Optim.
1052-6234,
7
(
1
), pp.
1
25
.
22.
Yin
,
S.
, and
Cagan
,
J.
, 2004, “
Exploring the Effectiveness of Various Patterns in an Extended Pattern Search Layout Algorithm
,”
J. Mech. Des.
1050-0472,
126
, pp.
22
28
.
23.
Rice
,
J. A.
, 1995,
Mathematical Statistics and Data Analysis
, 2nd ed.,
Duxbury Press
.
24.
Aladahalli
,
C.
,
Cagan
,
J.
, and
Shimada
,
K.
, 2002, “
A Sensitivity Based Pattern Search Algorithm for 3D Component Layout
,
Proceedings of the ASME DETC
,
Montreal, Canada
.
25.
Aladahalli
,
C.
,
Cagan
,
J.
, and
Shimada
,
K.
, 2003, “
Minimum Height Packing for Layered Manufacturing Using an Extended Pattern Search Algorithm
,”
Proceedings of the ASME DETC
,
Chicago, IL
.
26.
Sorkin
,
G. B.
, 1992,
Theory and Practice of Simulated Annealing on Special Energy Landscapes
,
University of California Press at Berkeley
,
Berkeley, CA.
.
27.
Peitgen
,
H.
,
Jurgens
,
H.
, and
Saupe
,
D. S.
, 1992, “Program of the Chapter: Random Midpoint Displacement,”
Chaos and Fractals: New Frontiers of Science
,
Springer
,
Berlin
.
You do not currently have access to this content.