This paper presents a heuristic global convergence method, termed as patterned bootstrap (PB), for solving systems of equations. In the PB method, multiple directions starting from a given point are searched. A number of intermediate underdetermined systems are selected and solved sequentially using classic globally convergence methods. Numerical experiments demonstrate that the PB method outperforms Levenberg-Marquardt method on solving a number of challenging synthesis problems in no more than 18 variables. On the other hand, Levenberg-Marquardt method normally outperforms the PB method on solving several systems of equations in 30 variables which are derived from the five precision-position motion generation problem of spatial RRR manipulators. In the paper, tunneling functions are also introduced to exclude degenerated solution sets in several synthesis problems. The research reveals that appropriate numerical methods and synthesis equations can be chosen for obtaining most solutions efficiently and provide a complete solution set of a precision position synthesis problem within a domain of interest.

1.
Hartenberg
,
R. S.
, and
Denavit
,
J.
, 1964,
Kinematic Synthesis of Linkage
,
McGraw-Hill
, New York.
2.
Freudenstein
,
F.
, and
Sandor
,
G.
, 1959, “
Synthesis of Path-Generating Mechanisms by Means of Programmed Digital Computer
,”
ASME J. Eng. Ind.
0022-0817,
81
, pp.
159
168
.
3.
McLarnan
,
C. W.
, 1963, “
Synthesis of Six Link Planar Mechanisms by Numerical Analysis
,”
ASME J. Eng. Ind.
0022-0817,
85
, pp.
5
12
.
4.
Roth
,
B.
, and
Freudenstein
,
F.
, 1963, “
Synthesis of Path-Generating Mechanisms by Numerical Methods
,”
ASME J. Eng. Ind.
0022-0817,
85
, pp.
298
306
.
5.
Philipp
,
R. E.
, 1964, “
On the Synthesis of Two Degree-of-Freedom Linkages for the Maximum Number of Precision Positions
,” Ph.D. dissertation, Columbia University.
6.
Wampler
,
C. W.
,
Morgan
,
A. P.
, and
Sommese
,
A. J.
, 1992, “
Complete Solution of the Nine-Point Path Synthesis Problem for Four-Bar Linkages
,”
ASME J. Mech. Des.
1050-0472,
114
, pp.
153
159
.
7.
Wampler
,
C. W.
, 1999, “
Solving the Kinematics of Planar Mechanisms
,”
ASME J. Mech. Des.
1050-0472,
121
, pp.
387
391
.
8.
Pennock
,
G. R.
, and
Hasan
,
A.
, 2002, “
A Polynomial Equation for Coupler Curve of the Double Butterfly Linkage
,”
ASME J. Mech. Des.
1050-0472,
124
, pp.
39
46
.
9.
Dai
,
J. S.
,
Zhao
,
T.
, and
Nester
,
C.
, 2004, “
Sprained Ankle Physiotherapy Based Mechanism Synthesis and Stiffness Analysis of Rehabilitation Robotic Devices
,”
Auton. Rob.
0929-5593,
16
, pp.
193
302
.
10.
Tsai
,
L. W.
, and
Lu
,
J. J.
, 1990, “
Coupler-Point Curve Synthesis Using Homotopy Method
,”
ASME J. Mech. Des.
1050-0472,
112
, pp.
384
389
.
11.
Perez
,
A.
, 2003, Dual Quaternion Synthesis of Constrained Robotic Systems, Ph.D. dissertation, University of California, Irvine.
12.
Perez
,
A.
, and
McCarthy
,
J. M.
, 2004, “
Dual Quaternion Synthesis of Constrained Robotic Systems
,”
ASME J. Mech. Des.
1050-0472,
126
, pp.
425
435
.
13.
Perez
,
A.
, and
McCarthy
,
J. M.
, 2005, “
Clifford Algebra Exponentials and Planar Linkage Synthesis Equations
,”
ASME J. Mech. Des.
1050-0472,
127
, pp.
931
940
.
14.
Ortega
,
J. M.
, and
Rheinboldt
,
W. C.
, 1970,
Iterative Solution of Nonlinear Equations in Several Variables
,
Academic Press
, New York, pp.
334
340
.
15.
Morgan
,
A. P.
, 1987,
Solving Polynomial Systems Using Continuation for Scientific and Engineering Problems
,
Prentice-Hall
, Englewood Cliffs, NJ.
16.
Dhingra
,
A. K.
,
Cheng
,
J. C.
, and
Kohli
,
D.
, 1994, “
Synthesis of Six-Link, Slider-Crank and Four-Link Mechanisms for Function, Path and Motion Generation Using Homotopy With m-Homogenization
,”
ASME J. Mech. Des.
1050-0472,
116
, pp.
1122
1131
.
17.
Verschelde
,
J.
, 1999, “
Algorithm 795: PHC Pack: A General-Purpose Solver For Polynomial Systems by Homotopy Continuation
,”
ACM Trans. Math. Softw.
0098-3500,
25
(
2
), pp.
251
276
.
18.
Wise
,
S. M.
,
Sommese
,
A. J.
, and
Watson
,
L. T.
, 2000, “
Algorithm 801:POLSYS PLP: A Partitioned Linear Product Homotopy Code for Solving Polynomial Systems of Equations
,”
ACM Trans. Math. Softw.
0098-3500,
26
, pp.
176
200
.
19.
Su
,
H.-J.
,
McCarthy
,
J. M.
, and
Watson
,
L. T.
, 2004, “
Generalized Linear Product Polynomial Continuation and the Computation of Reachable Surfaces
,”
ASME J. Comput. Inf. Sci. Eng.
1530-9827,
4
(
3
), pp.
226
234
.
20.
Lee
,
E.
,
Mavroids
,
C.
, and
Merlet
,
J. P.
, 2002, “
Five Precision Points Synthesis of Spatial RRR Manipulators Using Interval Analysis
,” ASME Design Engineering Technical Conference, Montreal, Sept. 29–Oct. 2.
21.
Lee
,
E.
,
Mavroids
,
C.
, and
Merlet
,
J. P.
, 2004, “
Five Precision Points Synthesis of Spatial RRR Manipulators Using Interval Analysis
,”
ASME J. Mech. Des.
1050-0472,
126
, pp.
842
849
.
22.
Yang
,
T. L.
, 1995,
Fundamental Theories of Mechanical Systems
(in Chinese),
Mechanical Engineering Publisher
, Beijing, pp.
155
164
.
23.
Schreiber
,
H.
,
Meer
,
K.
, and
Schmitt
,
B.
, 2002, “
Dimensional Synthesis of Planar Stephenson-Mechanisms for Motion Generation by Circlepoint Search and Homotopy Methods
,”
Mech. Mach. Theory
0094-114X,
37
, pp.
717
737
.
24.
Ho
,
C. T.
, 2001,
Precision Position Synthesis for General Planar Mechanisms by Predictor-Corrector Continuation Method
, Ph.D. dissertation, University of Minnesota.
25.
Dai
,
J. S.
, and
Kerr
,
D. R.
, 1991, “
Geometric Analysis and Optimisation of Symmetrical Watt 6-Bar Mechanisms
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
0954-4062,
205
(C1), pp.
275
280
.
26.
Dai
,
J. S.
,
Huang
,
Z.
, and
Lipkin
,
H.
, 2006, “
Mobility of Overconstrained Parallel Mechanisms
,”
ASME J. Mech. Des.
1050-0472,
128
, pp.
220
229
.
27.
Hiebert
,
K. L.
, 1982, “
An Evaluation of Mathematical Software That Solves Systems of Nonlinear Equations
,”
ACM Trans. Math. Softw.
0098-3500,
8
(
1
), pp.
5
20
.
28.
Bouaricha
,
A.
, and
Schnabel
,
R. B.
, 1997, “
Algorithm 768: TENSOLVE: A Software Package for Solving Systems of Nonlinear Equations and Nonlinear Least-Squares Problems Using Tensor Methods
,”
ACM Trans. Math. Softw.
0098-3500,
23
(
2
), pp.
174
195
.
29.
Watson
,
L. T.
,
Sosonkina
,
M.
,
Melville
,
R. C.
, and
Morgan
,
A. P.
, 1997, “
Algorithm 777: HOMOPACK90: A Suite of Fortran 90 Codes for Globally Convergent Algorithms
,”
ACM Trans. Math. Softw.
0098-3500,
23
(
4
), pp.
514
549
.
30.
Allgower
,
E. L.
, and
Georg
,
K.
, 1990,
Numerical Continuation Methods: An Introduction
,
Springer-Verlag
, Berlin,
Springer Series in Computational Mathematics
, Vol.
13
.
31.
Rheinboldt
,
W. C.
, 2000, “
Numerical Continuation Methods: A Perspective
,”
J. Comput. Appl. Math.
0377-0427,
124
, pp.
229
244
.
32.
Li
,
T. Y.
, and
Wang
,
X. S.
, 1993, “
Solving Real Polynomial Systems With Real Homotopies
,”
Math. Comput.
0025-5718,
60
, pp.
669
680
.
33.
Zufiria
,
P. J.
, and
Guttalu
,
R. S.
, 1990, “
On an Application of Dynamical Systems Theory to Determine All the Zeros of a Vector Function
,”
J. Math. Anal. Appl.
0022-247X,
152
, pp.
269
295
.
34.
Paloschi
,
J. R.
, 1997, “
Bounded Homotopies to Solve Systems of Sparse Algebraic Nonlinear Equations
,”
Comput. Chem. Eng.
0098-1354,
21
(
5
), pp.
531
541
.
35.
Coetzee
,
F. M.
, and
Stonick
,
V. L.
, 1998, “
On Producing Multiple Solutions Using Repeated Trials
,”
J. Global Optim.
0925-5001,
13
, pp.
241
254
.
36.
Walker
,
H. F.
, and
Watson
,
L. T.
, 1990, “
Least Change Secant Update Methods for Undetermined Systems
,”
SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.
0036-1429,
27
(
5
) pp.
1227
1262
.
37.
Martinez
,
J. M.
, 1992, “
Quasi-Newton Methods for Solving Underdetermined Nonlinear Simultaneous Equations
,”
J. Comput. Appl. Math.
0377-0427,
34
, pp.
171
190
.
38.
Dan
,
N.
,
Yamashita
,
N.
, and
Fukushima
,
M.
, 2002, “
Convergence Properties of Inexact Levenberg-Marquardt Method Under Local Error Bound Conditions
,”
Optim. Methods Software
1055-6788,
17
, pp.
605
626
.
39.
Mlinar
,
J. R.
, and
Erdman
,
A. G.
, 2000, “
An Introduction to Burmester Field Theory
,”
ASME J. Mech. Des.
1050-0472,
122
, pp.
25
30
.
40.
Brown
,
K. M.
, and
Gearhart
,
W. B.
, 1971, “
Deflation Techniques for the Calculation of Further Solutions of a Nonlinear System
,”
Numer. Math.
0029-599X,
16
, pp.
334
342
.
41.
Levy
,
A. V.
, and
Gómez
,
S.
, 1985, “
The Tunnelling Method Applied to Global Optimization
,”
P. T.
Boggs
and
R. H.
Byrd
(eds),
SIAM Numerical Optimization
,
SIAM
, Philadelphia, pp.
213
244
.
42.
Ge
,
R.
, and
Qin
,
Y.
, 1987, “
A Class of Filled Functions for Finding Global Minimizers of a Function of Several Variables
,”
J. Optim. Theory Appl.
0022-3239,
54
, pp.
241
252
.
43.
Neumaier
,
A.
, 1990,
Interval Methods for Systems of Equations
,
Cambridge University Press
, Cambridge, England,
PHI Series in Computer Science
.
44.
Ting
,
K. L.
, and
Dou
,
X.
, 1996, “
Classification and Branch Identification of Stephenson Six-Bar Chains
,”
Mech. Mach. Theory
0094-114X,
31
, pp.
283
295
.
45.
Yang
,
A. T.
, 1963, “
Application of Quaternion Algebra and Dual Numbers to the Analysis of Spatial Mechanisms
,” Ph.D. dissertation, Columbia University.
46.
Tsai
,
L. W.
, 1972, “
Design of Open Loop Chains for Rigid Body Guidance
,” Ph.D. dissertation, Stanford University.
47.
Sandor
,
G. N.
,
Xu
,
Y.
, and
Weng
,
T. C.
, 1986, “
Synthesis of 7-R Spatial Motion Generators With Prescribed Crank Rotations and Elimination of Branching
,”
Int. J. Robot. Res.
0278-3649,
5
(
2
), pp.
143
156
.
48.
Lee
,
E.
,
Mavroids
,
C.
, and
Merlet
,
J. P.
, 2002, “
Solving the Geometrical Design Problem of Spatial 3R Robotic Manipulators Using Polynomial Homotopy Continuation
,”
ASME J. Mech. Des.
1050-0472,
124
, pp.
652
661
.
49.
Lee
,
E.
, and
Mavroids
,
C.
, 2006, “
An Elimination Procedure for Solving the Geometric Design of Spatial 3R Manipulators
,”
ASME J. Mech. Des.
1050-0472,
128
, pp.
142
145
.
50.
Su
,
H.-J.
,
Wampler
,
C. W.
, and
McCarthy
,
J. M.
, 2004, “
Geometric Design of Cylindric PRS Serial Chains
,”
ASME J. Mech. Des.
1050-0472,
126
, pp.
269
277
.
51.
Dai
,
J. S.
, and
Rees Jones
,
J.
, 2002, “
Null Space Construction Using Cofactors from a Screw Algebra Context
,”
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
,
458
(
2024
), pp.
1845
1866
.
52.
Luo
,
Z.
, 2006, “
Kinematic Representation and Numerical Methods in Precision Position Synthesis of Mechanisms
,” PhD Dissertation, King's College London, University of London.
You do not currently have access to this content.