A paradigm shift is underway in which the classical materials selection approach in engineering design is being replaced by the design of material structure and processing paths on a hierarchy of length scales for multifunctional performance requirements. In this paper, the focus is on designing mesoscopic material topology—the spatial arrangement of solid phases and voids on length scales larger than microstructures but smaller than the characteristic dimensions of an overall product. A robust topology design method is presented for designing materials on mesoscopic scales by topologically and parametrically tailoring them to achieve properties that are superior to those of standard or heuristic designs, customized for large-scale applications, and less sensitive to imperfections in the material. Imperfections are observed regularly in cellular material mesostructure and other classes of materials because of the stochastic influence of feasible processing paths. The robust topology design method allows us to consider these imperfections explicitly in a materials design process. As part of the method, guidelines are established for modeling dimensional and topological imperfections, such as tolerances and cracked cell walls, as deviations from intended material structure. Also, as part of the method, robust topology design problems are formulated as compromise Decision Support Problems, and local Taylor-series approximations and strategic experimentation techniques are established for evaluating the impact of dimensional and topological imperfections, respectively, on material properties. Key aspects of the approach are demonstrated by designing ordered, prismatic cellular materials with customized elastic properties that are robust to dimensional tolerances and topological imperfections.

1.
Eschenauer
,
H. A.
, and
Olhoff
,
N.
, 2001, “
Topology Optimization of Continuum Structures: A Review
,”
Appl. Mech. Rev.
0003-6900,
54
(
4
), pp.
331
389
.
2.
Ohsaki
,
M.
, and
Swan
,
C. C.
, 2002, “
Topology and Geometry Optimization of Trusses and Frames
,”
Recent Advances in Optimal Structural Design
,
S. A.
Burns
, ed.,
American Society of Civil Engineers
, Reston, VA.
3.
Soto
,
C.
, 2001, “
Structural Topology Optimization: From Minimizing Compliance to Maximizing Energy Absorption
,”
Int. J. Veh. Des.
0143-3369,
25
(
1/2
), pp.
142
160
.
4.
Bendsoe
,
M. P.
, and
Kikuchi
,
N.
, 1988, “
Generating Optimal Topologies in Structural Design Using a Homogenization Method
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
71
, pp.
197
224
.
5.
Sigmund
,
O.
, 1994, “
Materials With Prescribed Constitutive Parameters: An Inverse Homogenization Problem
,”
Int. J. Solids Struct.
0020-7683,
31
, pp.
2313
2329
.
6.
Sigmund
,
O.
, 1995, “
Tailoring Materials With Prescribed Elastic Properties
,”
Mech. Mater.
0167-6636,
20
, pp.
351
368
.
7.
Sigmund
,
O.
, 2000, “
A New Class of Extremal Composites
,”
J. Mech. Phys. Solids
0022-5096,
48
(
2
), pp.
397
428
.
8.
Sigmund
,
O.
, and
Torquato
,
S.
, 1997, “
Design of Materials With Extreme Thermal Expansion Using a Three-Phase Topology Optimization Method
,”
J. Mech. Phys. Solids
0022-5096,
45
(
6
), pp.
1037
1067
.
9.
Hyun
,
S.
, and
Torquato
,
S.
, 2002, “
Optimal and Manufacturable Two-Dimensional, Kagome-Like Cellular Solids
,”
J. Mater. Res.
0884-2914,
17
(
1
), pp.
137
144
.
10.
Seepersad
,
C. C.
,
Allen
,
J. K.
,
McDowell
,
D. L.
, and
Mistree
,
F.
, 2003, “
Robust Topological Design of Cellular Materials
,” ASME Advances in Design Automation, Chicago, IL, Paper No. DETC2003/DAC-48772.
11.
Cochran
,
J. K.
,
Lee
,
K. J.
,
McDowell
,
D. L.
, and
Sanders
,
T. H.
, 2000, “
Low Density Monolithic Honeycombs by Thermal Chemical Processing
,”
Proceedings of the 4th Conference on Aerospace Materials, Processes, and Environmental Technology
,
Huntsville, AL.
12.
Wang
,
A.
, and
McDowell
,
D. L.
, 2004, “
Effects of Defects on In-Plane Properties of Periodic Metal Honeycombs
,”
Int. J. Mech. Sci.
0020-7403,
45
(
11
), pp.
1799
1813
.
13.
Silva
,
M. J.
,
Hayes
,
W. C.
, and
Gibson
,
L. J.
, 1995, “
The Effects of Non-Periodic Microstructure on the Elastic Properties of Two-Dimensional Cellular Solids
,”
Int. J. Mech. Sci.
0020-7403,
37
(
11
), pp.
1161
1177
.
14.
Bocchini
,
G. F.
, 1986, “
The Influence of Porosity on the Characteristics of Sintered Materials
,”
Int. J. Powder Metall.
0020-7535,
22
(
3
), pp.
185
202
.
15.
Diaz
,
A.
, and
Bendsoe
,
M. P.
, 1992, “
Shape Optimization of Structures for Multiple Loading Situations Using a Homogenization Method
,”
Struct. Optim.
0934-4373,
4
, pp.
17
22
.
16.
Diaz
,
A.
,
Lipton
,
R.
, and
Soto
,
C. A.
, 1995, “
A New Formulation of the Problem of Optimum Reinforcement of Reissner-Mindlin Plates
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
123
, pp.
121
139
.
17.
Christiansen
,
S.
,
Patriksson
,
M.
, and
Wynter
,
L.
, 2001, “
Stochastic Bilevel Programming in Structural Optimization
,”
Struct. Multidiscip. Optim.
1615-147X,
21
, pp.
361
371
.
18.
Maute
,
K.
, and
Frangopol
,
D. M.
, 2003, “
Reliability-Based Design of MEMS Mechanisms by Topology Optimization
,”
Comput. Struct.
0045-7949,
81
, pp.
813
824
.
19.
Thampan
,
C. K. P. V.
, and
Krishnamoorthy
,
C. S.
, 2001, “
System Reliability-Based Configuration Optimization of Trusses
,”
J. Struct. Eng.
0733-9445,
127
(
8
), pp.
947
956
.
20.
Bae
,
K.-R.
,
Wang
,
S.
, and
Choi
,
K. K.
, 2002, “
Reliability-Based Topology Optimization
,” 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Atlanta, GA, Paper No: AIAA-2002-5542.
21.
Ben-Tal
,
A.
, and
Nemirovski
,
A.
, 1997, “
Robust Truss Topology Design via Semidefinite Programming
,”
SIAM J. Optim.
1052-6234,
7
(
4
), pp.
991
1016
.
22.
Cherkaev
,
A.
, and
Cherkaeva
,
E.
, 1999, “
Optimal Design for Uncertain Loading Conditions
,”
Homogenization
V.
Berdichevsky
,
V.
Jikov
, and
G.
Papanicolaou
, eds.,
World Scientific
, Singapore, pp.
193
213
.
23.
Kocvara
,
M.
,
Zowe
,
J.
, and
Nemirovski
,
A.
, 2000, “
Cascading—An Approach to Robust Material Optimization
,”
Comput. Struct.
0045-7949,
76
, pp.
431
442
.
24.
Sandgren
,
E.
, and
Cameron
,
T. M.
, 2002, “
Robust Design Optimization of Structures through Consideration of Variation
,”
Comput. Struct.
0045-7949,
80
, pp.
1605
1613
.
25.
Taguchi
,
G.
, 1986,
Introduction to Quality Engineering
,
Asian Productivity Organization, UNIPUB
, White Plains, NY.
26.
Taguchi
,
G.
, and
Clausing
,
D.
, 1990, “
Robust Quality
,”
Harvard Bus. Rev.
0017-8012, Jan/Feb, pp.
65
75
.
27.
Phadke
,
M. S.
, 1989,
Quality Engineering Using Robust Design
,
Prentice-Hall
, Englewood Cliffs, NJ.
28.
Parkinson
,
A.
,
Sorensen
,
C.
, and
Pourhassan
,
N.
, 1993, “
A General Approach for Robust Optimal Design
,”
ASME J. Mech. Des.
1050-0472,
115
(
1
), pp.
74
80
.
29.
Chen
,
W.
,
Allen
,
J. K.
,
Tsui
,
K.-L.
, and
Mistree
,
F.
, 1996, “
A Procedure for Robust Design: Minimizing Variations Caused by Noise Factors and Control Factors
,”
ASME J. Mech. Des.
1050-0472,
118
(
4
), pp.
478
485
.
30.
Otto
,
K. N.
, and
Antonsson
,
E. K.
, 1993, “
Extensions to the Taguchi Method of Product Design
,”
ASME J. Mech. Des.
1050-0472,
115
(
1
), pp.
5
13
.
31.
Ramakrishnan
,
B.
, and
Rao
,
S. S.
, 1996, “
A General Loss Function Based Optimization Procedure for Robust Design
,”
Eng. Optimiz.
0305-215X,
25
(
4
), pp.
255
276
.
32.
Michelena
,
N. F.
, and
Agogino
,
A. M.
, 1994, “
Formal Solution of N-Type Robust Parameter Design Problems With Stochastic Noise Factors
,”
ASME J. Mech. Des.
1050-0472,
116
(
2
), pp.
501
507
.
33.
Sundaresan
,
S.
,
Ishii
,
K.
, and
Houser
,
D. R.
, 1995, “
A Robust Optimization Procedure With Variations on Design Variables and Constraints
,”
Eng. Optimiz.
0305-215X,
24
, pp.
101
117
.
34.
Yu
,
J.
, and
Ishii
,
K.
, 1998, “
Design for Robustness Based on Manufacturing Variation Patterns
,”
ASME J. Mech. Des.
1050-0472,
120
(
2
), pp.
196
202
.
35.
Seepersad
,
C. C.
, 2004, “
A Robust Topological Preliminary Design Exploration Method With Materials Design Applications
,” Ph.D. dissertation, G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA.
36.
Malvern
,
L. E.
, 1969,
Introduction to the Mechanics of a Continuous Medium
,
Prentice-Hall
, Upper Saddle River, NJ.
37.
Kirsch
,
U.
, 1989, “
Optimal Topologies of Structures
,”
Appl. Mech. Rev.
0003-6900,
42
(
8
), pp.
223
239
.
38.
Topping
,
B. H. V.
, 1984, “
Shape Optimization of Skeletal Structures: A Review
,”
J. Struct. Eng.
0733-9445,
109
(
8
), pp.
1933
1951
.
39.
Dorn
,
W. S.
,
Gomory
,
R. E.
, and
Greenberg
,
H. J.
, 1964, “
Automatic Design of Optimal Structures
,”
J. Mec.
0021-7832,
3
, pp.
25
52
.
40.
Reddy
,
J. N.
, 1993,
An Introduction to the Finite Element Method
,
2nd ed.
,
McGraw-Hill
, Boston.
41.
Mistree
,
F.
,
Hughes
,
O. F.
, and
Bras
,
B. A.
, 1993, “
The Compromise Decision Support Problem and the Adaptive Linear Programming Algorithm
,”
Structural Optimization: Status and Promise
,
M. P.
Kamat
, ed.,
AIAA
, Washington, DC, pp.
247
286
.
42.
Charnes
,
A.
, and
Cooper
,
W. W.
, 1961,
Management Models and Industrial Applications of Linear Programming
,
Wiley
, New York.
43.
Neves
,
M. M.
,
Rodrigues
,
H.
, and
Guedes
,
J. M.
, 2000, “
Optimal Design of Periodic Linear Elastic Microstructures
,”
Comput. Struct.
0045-7949,
76
(
1–3
), pp.
421
429
.
44.
Nemat-Nasser
,
S.
, and
Hori
,
M.
, 1999,
Micromechanics: Overall Properties of Heterogeneous Materials
,
2nd ed.
,
Elsevier
, Amsterdam.
45.
Cook
,
R. D.
,
Malkus
,
D. S.
, and
Plesha
,
M. E.
, 1989,
Concepts and Applications of Finite Element Analysis
,
3rd ed.
,
Wiley
, New York.
46.
van der Sluis
,
O.
,
Schreurs
,
P. J. G.
,
Brekelmans
,
W. A. M.
, and
Meijer
,
H. E. H.
, 2000, “
Overall Behavior of Heterogeneous Elastoviscoplastic Materials: Effect of Microstructural Modeling
,”
Mech. Mater.
0167-6636,
32
, pp.
449
462
.
47.
Hayes
,
A. M.
,
Wang
,
A.
,
Dempsey
,
B. M.
, and
McDowell
,
D. L.
, 2004, “
Mechanics of Linear Cellular Alloys
,”
Mech. Mater.
0167-6636,
36
, pp.
691
713
.
48.
Svanberg
,
K.
, 1987, “
The Method of Moving Asymptotes—A New Method for Structural Optimization
,”
Int. J. Numer. Methods Eng.
0029-5981,
24
, pp.
359
373
.
You do not currently have access to this content.