This paper focuses on reducing the dynamic reactions (shaking force, shaking moment, and driving torque) of planar crank-rocker four-bars through counterweight addition. Determining the counterweight mass parameters constitutes a nonlinear optimization problem, which suffers from local optima. This paper, however, proves that it can be reformulated as a convex program, that is, a nonlinear optimization problem of which any local optimum is also globally optimal. Because of this unique property, it is possible to investigate (and by virtue of the guaranteed global optimum, in fact prove) the ultimate limits of counterweight balancing. In a first example a design procedure is presented that is based on graphically representing the ultimate limits in design charts. A second example illustrates the versatility and power of the convex optimization framework by reformulating an earlier counterweight balancing method as a convex program and providing improved numerical results for it.

1.
Berkof
,
R. S.
, and
Lowen
,
G. G.
, 1969, “
A New Method for Completely Force Balancing Simple Linkages
,”
ASME J. Eng. Ind.
0022-0817,
91
(
1
), pp.
21
26
.
2.
Lowen
,
G. G.
,
Tepper
,
F. R.
, and
Berkof
,
R. S.
, 1983, “
Balancing of Linkages–An Update
,”
Mech. Mach. Theory
0094-114X,
18
, pp.
213
220
.
3.
Arakelian
,
V. H.
, and
Smith
,
M. R.
, 2005, “
Shaking Force and Shaking Moment Balancing of Mechanisms: A Historical Review With New Examples
,”
ASME J. Mech. Des.
1050-0472,
127
, pp.
334
339
.
4.
Arakelian
,
V. H.
, and
Smith
,
M. R.
, 2005 “
Erratum – Shaking Force and Shaking Moment Balancing of Mechanisms: A Historical Review With New Examples [J. Mech. Des., 127(2), pp. 334–339]
,”
ASME J. Mech. Des.
1050-0472,
127
, pp.
1034
1035
.
5.
Lowen
,
G. G.
,
Tepper
,
F. R.
, and
Berkof
,
R. S.
, 1974 “
The Quantitative Influence of Complete Force Balancing on the Forces and Moments of Certain Families of Four-Bar Linkages
,”
Mech. Mach. Theory
0094-114X,
9
, pp.
299
323
.
6.
VDI2149, 1999, “
Blatt 1: Getriebedynamik–Starrkörper Mechanismen (Dynamics of Mechanisms–Rigid Body Mechanisms)
,” Verein Deutscher Ingenieure – Richtlinien.
7.
Norton
,
R. L.
, 2001,
Design of Machinery: An Introduction to the Synthesis and Analysis of Mechanisms and Machines
,
2nd Ed.
,
McGraw–Hill
, New York.
8.
Berkof
,
R. S.
, and
Lowen
,
G. G.
, 1971, “
Theory of Shaking Moment Optimization of Force-Balanced Four-Bar Linkages
,”
ASME J. Eng. Ind.
0022-0817,
93
(
1
), pp.
53
60
.
9.
Lowen
,
G. G.
, and
Berkof
,
R. S.
, 1971, “
Determination of Force-Balanced Four-Bar Linkages With Optimum Shaking Moment Characteristics
,”
ASME J. Eng. Ind.
0022-0817,
93
(
1
), pp.
39
46
.
10.
Tepper
,
F. R.
, and
Lowen
,
G. G.
, 1975, “
Shaking Force Optimization of Four-Bar Linkage With Adjustable Constraints on Ground Bearing Forces
,”
ASME J. Eng. Ind.
0022-0817,
97
(
2
), pp.
643
651
.
11.
Wiederrich
,
J. L.
, and
Roth
,
B.
, 1976, “
Momentum Balancing of Four-Bar Linkages
,”
ASME J. Eng. Ind.
0022-0817,
98
(
4
), pp.
1289
1295
.
12.
Elliott
,
J. L.
, and
Tesar
,
D.
, 1977, “
The Theory of Torque, Shaking Force and Shaking Moment Balancing of Four Link Mechanisms
,”
ASME J. Eng. Ind.
0022-0817,
99
(
3
), pp.
715
722
.
13.
Haines
,
R. S.
, 1981 “
Minimum rms Shaking Moment or Driving Torque of a Force-Balanced Four-Bar Linkage Using Feasible Counterweights
,”
Mech. Mach. Theory
0094-114X,
16
, pp.
185
190
.
14.
Porter
,
B.
, and
Sanger
,
F. J.
, 1972. “
Synthesis of Dynamically Optimal Four-Bar Linkages
,”
Proc. Inst. Mech. Eng.
0020-3483, Paper No. C69/
72
, pp.
24
28
.
15.
Sadler
,
J. P.
, and
Mayne
,
R. W.
, 1973, “
Balancing of Mechanisms by Nonlinear Programming
,”
Third Applied Mechanism Conference
, Paper No. 29,
Oklahoma State University
, Stillwater, OK.
16.
Smith
,
M. R.
, 1975, “
Optimal Balancing of Planar Multi-Bar Linkages
,” In
Proceedings of the Fourth World Congress on the Theory of Machines and Mechanisms
,
Newcastle-upon-Tyne
, UK, pp.
145
149
.
17.
Sadler
,
J. P.
, 1975, “
Balancing of Six-Bar Linkages by Nonlinear Programming
,” In
Proceedings of the Fourth World Congress on the Theory of Machines and Mechanisms
,
Newcastle-upon-Tyne
, UK, pp.
139
144
.
18.
Dresig
,
H.
, and
Schönfeld
,
S.
, 1976, “
Rechnergestützte Optimierung der Antriebs-und Gestellkraftgrössen Ebener Koppelgetriebe (Computer-Aided Otimization of Driving and Frame Reaction Forces of Planar Linkages)
,”
Mech. Mach. Theory
0094-114X,
11
, pp.
363
379
.
19.
Tricamo
,
S. J.
, and
Lowen
,
G. G.
, 1983, “
A Novel Method for Prescribing the Maximum Shaking Force of a Four-Bar Linkage With Flexibility in Counterweight Design
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
105
, pp.
511
519
.
20.
Lee
,
T. W.
, and
Cheng
,
C.
, 1984, “
Optimum Balancing of Combined Shaking Force, Shaking Moment, and Torque Fluctuations in High-Speed Linkages
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
106
, pp.
242
251
.
21.
Qi
,
N. M.
, and
Pennestri
,
E
, 1991, “
Optimum Balancing of Four-Bar Linkages–A Refined Algorithm
,”
Mech. Mach. Theory
0094-114X,
26
, pp.
337
348
.
22.
Porter
,
B.
,
Mohamed
,
S. S.
, and
Sangolola
,
B. A.
, 1994, “
Genetic Design of Dynamically Optimal Four-Bar Linkages
, In
Proceedings of the 1994 ASME Mechanisms Conference
,
DE–70
, Minneapolis, pp.
413
424
.
23.
Guo
,
G.
,
Morita
,
N.
, and
Torii
,
T.
, 2000, “
Optimum Dynamic Design of Planar Linkage Using Genetic Algorithms
,”
JSME Int. J., Ser. C
1340-8062,
43
, pp.
372
377
.
24.
Foucault
,
S.
, and
Gosselin
,
C. M.
, 2004, “
Synthesis, Design, and Prototyping of a Planar Three Degree-of-Freedom Reactionless Parallel Mechanism
,”
ASME J. Mech. Des.
1050-0472,
126
, pp.
992
999
.
25.
Boyd
,
S.
, and
Vandenberghe
,
L.
, 2004,
Convex Optimization
,
Cambridge University Press
, Cambridge.
26.
Hertrich
,
F. R.
, 1963, “
How to Balance High-Speed Mechanisms With Minimum Inertia Counterweights
,”
Mach. Des.
0024-9114,
35
, pp.
160
164
.
27.
Weiss
,
K.
, and
Fenton
,
R. G.
, 1972, “
Minimum Inertia Balance Weight
,” Mech. Chem. Eng. Trans. I.E. Aust., MC8, pp.
93
96
.
28.
Nocedal
,
J.
, and
Wright
,
S. J.
, 1999,
Numerical Optimization
,
Springer-Verlag
.
29.
Demeulenaere
,
B.
, 2004,
Dynamic Balancing of Reciprocating Machinery With Application to Weaving Machines
,” PhD thesis, K.U.Leuven, Leuven, Belgium.
30.
Rockafellar
,
R. T.
, 1993, “
Lagrange Multipliers and Duality
,”
SIAM Rev.
0036-1445,
35
, pp.
183
283
.
31.
Ben-Tal
,
A.
, and
Nemirovski
,
A.
, 1997, “
Robust Truss Topology Design Via Semidefinite Programming
,”
SIAM J. Optim.
1052-6234,
7
, pp.
991
1016
.
32.
Ben-Tal
,
A.
, and
Nemirovski
,
A.
, 2001, “
Lectures on Modern Convex Optimization: Analysis, Algorithms, and Engineering Applications
,”
MPS/SIAM Series on Optimization
2
.
SIAM/MPS
,
Philadelphia
.
33.
Zillober
,
C.
, 2002, “
Scpip-An Efficient Software Tool for the Solution of Structural Optimization Problems
,”
Struct. Multidiscip. Optim.
1615-147X,
24
, pp.
362
371
.
34.
Buss
,
M.
,
Hashimoto
,
H.
, and
Moore
,
J. B.
, 1996, “
Dextrous Hand Grasping Force Optimization
,”
IEEE Trans. Rob. Autom.
1042-296X,
12
, pp.
406
418
.
35.
Vanderplaats
,
G. N.
, 1984,
Numerical Optimization Techniques for Engineering Design
,
McGraw–Hill
, New York.
36.
Lobo
,
M. S.
,
Vandenberghe
,
L.
,
Boyd
,
S.
, and
Lebret
,
H.
, 1998, “
Applications of Second-Order Cone Programming
,”
Linear Algebr. Appl.
0024-3795,
284
, pp.
193
228
.
37.
Atkeson
,
C. G.
,
An
,
C. H.
, and
Hollerbach
,
J. M.
, 1986, “
Estimation of Inertial Parameters of Manipulator Loads and Links
,”
Int. J. Robot. Res.
0278-3649,
5
, pp.
101
119
.
38.
Swevers
,
J.
,
Ganseman
,
C.
,
Tükel
,
D.
,
De Schutter
,
J.
, and
Van Brussel
,
H.
, 1997, “
Optimal Robot Excitation and Identification
,”
IEEE Trans. Rob. Autom.
1042-296X,
13
, pp.
730
739
.
39.
Elliott
,
J. L.
, and
Tesar
,
D.
, 1982, “
A General Mass Balancing Method for Complex Planar Mechanisms
,”
Mech. Mach. Theory
0094-114X,
17
, pp.
153
172
.
40.
Kochev
,
I. S.
, 1991, “
Contribution to the Theory of Torque, Shaking Force and Shaking Moment Balancing of Planar Linkages
,”
Mech. Mach. Theory
0094-114X,
26
(
3
), pp.
275
284
.
41.
Löfberg
,
J.
, 2004, “
YALMIP: A Toolbox for Modeling and Optimization in MATLAB
,” In
Proc. 2004 IEEE CCA/ISIC/CACSD
, Paper No. SaM09.1, Taipei, Taiwan.
42.
Sturm
,
J. F.
, 1999, “
Using Sedumi 1.02, a MATLAB Toolbox for Optimization Over Symmetric Cones
,”
Optim. Methods Software
1055-6788,
11
, pp.
625
653
. Special issue on Interior Point Methods (CD supplement with software).
43.
Gosselin
,
C. M.
,
Vollmer
,
F.
,
Côté
,
G.
, and
Wu
,
Y.
, 2004, “
Synthesis and Design of Reactionless Three-Degree-of-Freedom Mechanisms
,”
IEEE Trans. Rob. Autom.
1042-296X,
20
(
2
), pp.
191
199
.
You do not currently have access to this content.