Single-loop N-bar linkages that contain one prismatic joint are common in engineering. This type of mechanism often requires complicated control and, hence, understanding its mobility is very important. This paper presents a systematic study on the mobility of this type of mechanism by introducing the concept of virtual link. It is found that this type of mechanism can be divided into three categories: Class I, Class II, and Class III. For each category, the slide reachable range is cut into different regions: Grashof region, non-Grashof region, and change-point region. In each region, the rotation range of the revolute joint or rotatability of the linkage can be determined based on Ting’s criteria. The characteristics charts are given to describe the rotatability condition. Furthermore, if the prismatic joint is an active joint, the revolvability of the input revolute joint is dependent in non-Grashof region but independent in other regions. If the prismatic joint is a passive joint, the revolvability of the input revolute joint is dependent on the offset distance of the prismatic joint. Two examples are given to demonstrate the presented method. The new method is able to cover all the cases of N-bar planar linkages with one or a set of adjoined prismatic joints. It can also be used to study N-bar open-loop planar robotic mechanisms.

1.
Ting
,
K. L.
, and
Tsai
,
G. H.
, 1985, “
Mobility and Synthesis of Five-Bar Programmable Linkages
,”
Proceedings of the 9th OSU Applied Mechanisms Conference
,
Kansas City, Mo, pp.
1
8
.
2.
Ting
,
K. L.
, 1986, “
Five-Bar Grashof Criteria
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
108
, pp.
533
537
.
3.
Ting
,
K. L.
, 1994, “
Mobility Criteria of Geared Five-Bar Linkages
,”
Mech. Mach. Theory
0094-114X,
29
, pp.
251
264
.
4.
Dou
,
X.
, and
Ting
,
K. L.
, 1996, “
Branch Identification of Geared Five-Bar Chain
,”
ASME J. Mech. Des.
1050-0472,
118
, pp.
384
389
.
5.
Dimarogonas
,
A. D.
,
Sandor
,
G. N.
, and
Erdman
,
A. G.
, 1971, “
Synthesis of a Geared N-bar linkage
,”
ASME J. Eng. Ind.
0022-0817,
93
, pp.
157
164
.
6.
Wang
,
D.
, and
Vidyasagar
,
M.
, 1987, “
Algorithm for Generating Inertia Matrices of a Class of N-Bar-Linkage Robots
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
6
, pp.
111
115
.
7.
Lee
,
N. L.
, and
Ting
,
K. L.
, 1991, “
Workspace and Sensitive Postures of Planar Open-Loop Manipulators
,”
Mech. Mach. Theory
0094-114X,
26
, pp.
593
602
.
8.
Ting
,
K. L.
, 1993, “
Branch and Dead Position Problems of N-bar Linkages
,”
ASME, Des. Eng. Div. DE
,
65
, pp.
459
465
.
9.
Liu
,
Y. W.
, and
Ting
,
K. L.
, 1994, “
On the Rotatability of Spherical N-Bar Chains
,”
ASME J. Mech. Des.
1050-0472,
116
, pp.
920
923
.
10.
Ting
,
K. L.
,
Zhu
,
J. M.
, and
Watkins
,
D.
, 2000, “
The Effects of Joint Clearance on Position and Orientation Deviation of Linkages and Manipulators
,”
Mech. Mach. Theory
0094-114X,
35
, pp.
391
401
.
11.
Milgram
,
R. J.
, and
Trinkle
,
J. C.
, 2001, “
Motion Planning for Planar n-bar Mechanisms With Revolute Joints
,”
IEEE International Conference on Intelligent Robots and Systems
,
3
, pp.
1602
1608
, Maui, Hawaii, October.
12.
Hernandez
,
A.
,
Petuya
,
V.
, and
Amezua
,
E.
, 2002, “
A Method for the Solution of the Forward Position Problems of Planar Mechanisms With Prismatic and Revolute Joints
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
0954-4062,
216
, pp.
395
407
.
13.
Yankov
,
Y. I.
, 1982, “
Intrinsic Transmission Functions of Plane Single-Loop Kinematic Chains With Revolute or Prismatic Joints
,”
Mech. Mach. Theory
0094-114X,
17
, pp.
1
20
.
14.
Yankov
,
Y. I.
, 1982, “
Kinematic, Static and Dynamic Investigations of a Plane Single-Loop Kinematic Chain With Prismatic Joints
,”
Mech. Mach. Theory
0094-114X,
17
, pp.
313
319
.
15.
Bahgat
,
B. M.
, and
Osman
,
M. O. M.
, 1992, “
Parametric Coupler Curve Equations of an Eight Link Planar Mechanism Containing Revolute and Prismatic Joints
,”
Mech. Mach. Theory
0094-114X,
27
, pp.
201
211
.
16.
Chalhoub
,
N. G.
, and
Chen
,
L.
, 1998, “
Structural Flexibility Transformation Matrix for Modelling Open-Kinematic Chains With Revolute and Prismatic Joints
,”
J. Sound Vib.
0022-460X,
218
, pp.
45
63
.
17.
Arsenault
,
M.
, and
Boudreau
,
R.
, 2004, “
Synthesis of a General Planar Parallel Manipulator With Prismatic Joints for Optimal Stiffness
,”
Proceeding of the 2004 the 11th World Congress in Mechanism and Machine Science
,
pp.
1633
1637
, Tianjin, China, April.
18.
Mallik
,
A. K.
, 1994, “
Mobility Analysis and Type Identification of Four-Link Mechanisms
,”
ASME J. Mech. Des.
1050-0472,
116
, pp.
629
633
.
19.
Chung
,
W.-Y.
, 2005, “
Mobility Analysis of RSSR Mechanisms by Working Volume
,”
ASME J. Mech. Des.
1050-0472,
127
, pp.
156
159
.
20.
DasGupta
,
A.
, 2004, “
Mobility Analysis of a Class of RPSPR Kinematic Chains
,”
ASME J. Mech. Des.
1050-0472,
126
, pp.
71
78
.
21.
Li
,
Q. C.
, and
Huang
,
Z.
, 2004, “
Mobility Analysis of a Novel 3-5R Parallel Mechanism Family
,”
ASME J. Mech. Des.
1050-0472,
126
, pp.
79
82
.
22.
Di Gregorio
,
R.
, and
Parenti-Castelli
,
V.
, 2002, “
Mobility Analysis of the 3-UPU Parallel Mechanism Assembled for a Pure Translational Motion
,”
ASME J. Mech. Des.
1050-0472,
124
, pp.
259
264
.
23.
Dai
,
Jian S.
,
,
Huang
,
Z.
, and
Lipkin
,
H.
, 2006, “
Mobility of Overconstrained Parallel Mechanisms
,”
ASME J. Mech. Des.
1050-0472
128
, pp.
220
229
.
24.
Rico
,
J. M.
,
Aguilera
,
L. D.
,
Gallardo
,
J.
,
Rodriguez
,
R.
,
Orozco
,
H.
, and
Barrera
,
J. M.
, 2005, “
A More General Mobility Criterion for Parallel Platforms
,”
ASME J. Mech. Des.
1050-0472
128
, pp.
207
219
.
25.
Baker
,
J. E.
, 2004, “
The Closure Modes of Bennett’s Twelve-Bar Planar Linkage
,”
ASME J. Mech. Des.
1050-0472,
126
, pp.
464
469
.
26.
Martinez
,
J. M. R.
, and
Ravani
,
B.
, 2003, “
On Mobility Analysis of Linkages Using Group Theory
,”
ASME J. Mech. Des.
1050-0472,
125
, pp.
70
80
.
27.
Ting
,
K.-L.
, 1988, “
General N-bar Mobility Laws
,”
ASME, Des. Eng. Div. DE
,
15
, pp.
65
69
.
28.
Ting
,
K. L.
, 1989, “
Mobility Criteria of Single-Loop N-Bar Linkages
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
111
, pp.
504
507
.
29.
Ting
,
K. L.
, and
Liu
,
Y. W.
, 1991, “
Rotatability Laws for N-Bar Kinematic Chains and Their Proof
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
108
, pp.
32
39
.
30.
Ting
,
K. L.
, and
Liu
,
Y. W.
, 1990, “
Rotatability Laws for N-Bar Kinematic Chains and Their Proof
,”
ASME, Des. Eng. Div. DE
,
26
, pp.
433
441
.
31.
Shyu
,
J. H.
, and
Ting
,
K. L.
, 1994, “
Invariant Link Rotatability of N-Bar Kinematic Chains
,”
ASME J. Mech. Des.
1050-0472,
116
, pp.
343
347
.
32.
Shyu
,
J. H.
, and
Ting
,
K. L.
, 1992, “
Invariant Link Rotatability of N-bar Kinematic Chains
,”
ASME, Des. Eng. Div. DE
,
47
, pp.
613
618
.
33.
Du
,
R.
, and
Guo
,
W. Z.
, 2003, “
The Design of a New Metal Forming Press With Controllable Mechanism
,”
ASME J. Mech. Des.
1050-0472,
125
, pp.
582
592
.
34.
Guo
,
W. Z.
, and
Du
,
R.
, 2005, “
A New Type of Controllable Mechanical Press—Motion Control and Experiment Validation
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
127
, pp.
731
742
.
35.
Guo
,
W. Z.
,
Zou
,
H. J.
, and
Han
,
B.
, etc. 2004, “
Mobility of 4R1P-type Five-Bars Using Characteristics Charts
,”
Proc. of ASME DETC 2004
, Salt Lake City, Utah,
DETC2004-57236, pp.
627
634
.
36.
Guo
,
W. Z.
, and
Huang
,
Q. G.
, etc. 2005, “
Grashof Criteria for 4R1P-type Five-Bar Planar Parallel Mechanisms With Active/Passive Prismatic Joint
,”
Chin. J. Mech. Eng.
0577-6686,
41
, pp.
66
73
(in Chinese).
37.
Guo
,
W. Z.
,
Du
,
R.
, and
Wang
,
J. X.
, 2005, “
On the Mobility of Single Loop N-Bar Linkage With One Prismatic Joint
,”
Proc. of ASME DETC 2005
,
Long Beach
, CA, DETC2005-84910.
38.
Huang
,
X. K.
, and
Zheng
,
W. W.
, 1989,
Theory of Machines
,
6 ed.
,
China Higher Education Press
, p.
91
(in Chinese), Beijing, China.
39.
Yoshikawa
,
T.
, 1985, “
Manipulability of Robotic Mechanisms
,”
Int. J. Robot. Res.
0278-3649,
4
, pp.
3
9
.
40.
Park
,
F. C.
, and
Kim
,
J. W.
, 1998, “
Manipulability of Closed Kinematic Chains
,”
ASME J. Mech. Des.
1050-0472,
120
, pp.
542
548
.
41.
Balkan
, and
Tuna
, 1991, “
Joint Space Trajectories for Robotic Manipulators
,”
Int. J. Comput. Appl. Technol.
0952-8091,
4
, pp.
148
151
.
42.
Ting
,
K. L.
, and
Shyu
,
J. H.
, 1992, “
Joint Rotation Space of Five-Bar Linkages
,”
ASME DE, Mech. Des. Syn.
,
46
, pp.
93
101
.
43.
Tsai
,
K. Y.
,
Kohli
,
D.
, and
Arnold
,
J.
, 1993, “
Trajectory Planning in Joint Space for Mechanical Manipulators
,”
ASME J. Mech. Des.
1050-0472,
115
, pp.
909
914
.
44.
Kumar
,
A.
, and
Warldron
,
K. J.
, 1980, “
The Dexterous Workspace
,”
ASME Design Engineering Conference
,
Paper No. 80-DET-108, Los Angeles, September.
45.
Gupta
,
K. C.
, and
Roth
,
B.
, 1978, “
Design Considerations for Manipulator Workspace
,”
ASME J. Mech. Des.
1050-0472,
104
, pp.
704
711
.
You do not currently have access to this content.