The paper proposes a method for the optimal synthesis of planar mechanisms, where a combination of cams and linkages is used in order to obtain a precise path generation. As a first step, based on Gruebler’s mobility criterion, a linkage mechanism is considered, with as many degrees of freedom as required by the generation task. One or more disk cams are then synthesized in order to reduce the system’s mobility and to obtain a single-input combined mechanical system. The final combined mechanism is able to guide a coupler point through any number of precision positions. A strategy for the global optimization of the synthesis process, based on evolutionary theory, is also proposed. A goal function is defined on the basis of dimensional and kinematic constraints and performance criteria, while a genetic algorithm is employed as an optimum searching procedure. An industrial application of the proposed methodology is described, where a path generation problem with time prescription is dealt with. The objective of the generation task is to guide a coupler point along a figure-eight trajectory, with a constant tangential velocity. Such a task is required by polishing machines for fiber optic connectors and similar components. A kinematic simulation of the optimal mechanism is used to validate the proposed synthesis methodology.

1.
Tao
,
D. C.
, 1964,
Applied Linkage Synthesis
,
Addison-Wesley
, Reading, MA.
2.
Hartenberg
,
R. S.
, and
Denavit
,
J.
, 1964,
Kinematic Synthesis of Linkages
,
McGraw–Hill
, New York.
3.
Roth
,
B.
, and
Freudenstein
,
F.
, 1963, “
Synthesis of Path Generating-Mechanisms by Numerical Methods
,”
Trans. ASME
0097-6822,
85B
, pp.
298
306
.
4.
Erdman
,
A. G.
, 1995, “
Computer-Aided Mechanism Design: Now and the Future
,”
ASME J. Mech. Des.
1050-0472, Special 50th Anniversary Design, Issue
117
, pp.
93
100
.
5.
Unruh
,
V.
, and
Krishnaswami
,
P.
, 1995, “
A Computer-Aided Design Technique for Semi-Automated Infinite Point Coupler Curve Synthesis of Four-Bar Linkages
,”
ASME J. Mech. Des.
1050-0472,
117
, pp.
143
149
.
6.
Sandor
,
G. N.
, and
Erdman
,
A. G.
, 1991,
Mechanism Design: Analysis and Synthesis
,
2nd ed.
,
Prentice–Hall
, Englewood Cliffs, NJ.
7.
Ullah
,
I.
, and
Kota
,
S.
, 1997, “
Optimal Synthesis of Mechanisms for Path Generation Using Fourier Descriptors and Global Search Methods
,”
ASME J. Mech. Des.
1050-0472,
119
, pp.
504
510
.
8.
Da Lio
,
M.
,
Cossalter
,
V.
, and
Lot
,
R.
, 2000, “
On the Use of Natural Coordinates in Optimal Synthesis of Mechanisms
,”
Mech. Mach. Theory
0094-114X,
35
, pp.
1367
1389
.
9.
Kramer
,
S. N.
, 1979, “
Selective Precision Synthesis of the Four-Bar Motion Generator With Prescribed Input Timing
,”
ASME J. Mech. Des.
1050-0472,
101
, pp.
614
618
.
10.
Krishnamurty
,
S.
, and
Turcic
,
D. A.
, 1992, “
Optimal Synthesis of Mechanisms using Nonlinear Goal Programming Techniques
,”
Mech. Mach. Theory
0094-114X,
27
, pp.
599
612
.
11.
Gabrera
,
J. A.
,
Simon
,
A.
, and
Prado
,
M.
, 2000, “
Optimal Synthesis of Mechanisms With Genetic Algorithms
,”
Mech. Mach. Theory
0094-114X,
37
, pp.
1165
1177
.
12.
Laribi
,
M. A.
,
Mlika
,
A.
,
Romdhane
,
L.
, and
Zeghloul
,
S.
, 2004, “
A Combined Genetic Algorithm-Fuzzy Logic Method (GA-FL) in Mechanism Synthesis
,”
Mech. Mach. Theory
0094-114X,
39
, pp.
717
735
.
13.
Yuan
,
Z. F.
,
Gilmartin
,
M. J.
, and
Douglas
,
S. S.
, 2004, “
Optimal Mechanism Design for Path Generation and Motions With Reduced Harmonic Content
,”
ASME J. Mech. Des.
1050-0472,
126
, pp.
191
196
.
14.
Angeles
,
J.
,
Alivizatos
,
A.
, and
Akhras
,
R.
, 1988, “
An Unconstrained Nonlinear Least-Square Method of Optimization of RRRR Planar Path Generators
,”
Mech. Mach. Theory
0094-114X,
23
, pp.
343
353
.
15.
Zhou
,
H.
, and
Cheung
,
E. H. M.
, 2001, “
Optimal Synthesis of Crank-Rocker Linkages for Path Generation using the Orientation Structural Error of the Fixed Link
,”
Mech. Mach. Theory
0094-114X,
36
, pp.
973
982
.
16.
Grant
,
B.
, and
Soni
,
A. N.
, 1974, “
Cam Design Survey
,”
Proc. Design Tech. Transfer Conf.
, New York, October 5–9, pp.
315
322
.
17.
Hain
,
K.
, 1967,
Applied Kinematics
,
McGraw–Hill
, New York.
18.
Singh
,
Y. P.
, and
Kohli
,
D.
, 1981, “
Synthesis of Cam-Link Mechanisms for Exact Path Generation
,”
Mech. Mach. Theory
0094-114X,
16
, pp.
447
457
.
19.
Sadler
,
J. P.
, and
Yang
,
Z.
, 1990, “
Optimal Design of Cam-Linkage Mechanisms for Dynamic-Force Characteristics
,”
Mech. Mach. Theory
0094-114X,
25
, pp.
41
57
.
20.
Ye
,
Z.
, and
Smith
,
M. R.
, 2005, “
Design of a Combined Cam-Linkage Mechanism With an Oscillating Roller Follower by an Analytical Method
,” Proc. IMechE Part C,
J. Mech. Eng. Sci.
0022-2542,
219
, pp.
419
427
.
21.
Yuan
,
L.
, and
Rastegar
,
J. S.
, 2004, “
Kinematics Synthesis of Linkage Mechanisms With Cam Integrated Joints for Controlled Harmonic Content of the Output Motion
,”
ASME J. Mech. Des.
1050-0472,
126
, pp.
135
142
.
22.
Demeulenaere
,
B.
, and
De Schutter
,
J.
, 2005, “
Input Torque Balancing Using an Inverted Cam Mechanism
,”
ASME J. Mech. Des.
1050-0472,
127
, pp.
887
900
.
23.
Buzzetti
,
M.
, “
Polishing Apparatus and Method
,” US Patent No. 6,454,631 B1, (24 September, 2002).
24.
Chen
,
F. Y.
, 1982,
Mechanics and Design of Cam Mechanisms
,
Pergamon
, Elmsford, New York.
25.
Liu
,
Y.
, and
McPhee
,
J.
, 2005, “
Automated Type Synthesis of Planar Mechanisms Using Numeric Optimization With Genetic Algorithms
,”
ASME J. Mech. Des.
1050-0472,
127
, pp.
910
916
.
26.
Saxena
,
A.
, 2005, “
Synthesis of Compliant Mechanisms for Path Generation Using Genetic Algorithm
,”
ASME J. Mech. Des.
1050-0472,
127
, pp.
745
752
.
You do not currently have access to this content.