Topology and size optimization methods are used to design compliant mechanisms that produce a constant output force for a given actuator characteristic of linearly decreasing force versus displacement. The design procedure consists of two stages: (i) topology optimization using two-dimensional (2-D) continuum parametrization, and (ii) size optimization of the beam-element abstraction derived from the continuum topology solution. The examples considered are based upon electrostatic microactuators used widely in microsystems. The procedure described here provides conceptual as well as practically usable designs for compliant transmission mechanisms with a constant output force characteristic. For any given topology design, the maximum achievable constant force over a given displacement range is determined. Ideal rigid-body and spring-equipped mechanisms are analyzed and their features are used to compare with the compliant solutions obtained.

1.
Huber
,
J. E.
,
Fleck
,
N. A.
, and
Ashby
,
M.
, 1997, “
The Selection of Mechanical Actuators Based on Performance Indices
,”
Proc. R. Soc. London, Ser. A
1364-5021,
453
, pp.
2185
2205
.
2.
Bell
,
D.
,
Lu
,
T.
,
Fleck
,
N.
, and
Spearing
,
S.
, 2005, “
The Selection of Mems Actuators and Sensors
,”
J. Micromech. Microeng.
0960-1317,
15
, pp.
153
164
.
3.
Nathan
,
R. H.
, 1985, “
A Constant-Force Generation Mechanism
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
107
, pp.
508
512
.
4.
Jenuwine
,
J. G.
, and
Midha
,
A.
, 1994, “
Synthesis of Single-Input and Multiple-Output Post Mechanisms with Springs for Specified Energy Absorption
,”
J. Mech. Des.
1050-0472,
116
(
3
), pp.
937
943
.
5.
Howell
,
L. L.
,
Midha
,
A.
, and
Murphy
,
M. D.
, 1994,
Dimensional Synthesis of Compliant Constant-Force Slider Mechanisms, Machine Elements and Machine Dynamics
, DE-Vol.
71
,
23rd ASME Biennial Mechanisms Conference
, pp.
509
,
515
.
6.
Boyle
,
C.
,
Howell
,
L. L.
,
Magleby
,
S. P.
, and
Evans
,
M. S.
, 2003, “
Dynamic Modeling of Compliant Constant-Force Compression Mechanisms
,”
Mech. Mach. Theory
0094-114X,
38
(
12
), pp.
1467
1487
.
7.
Ananthasuresh
,
G. K.
,
Kota
,
S.
, and
Gianchandani
,
Y.
, 1994, “
A Methodical Approach to the Design of Compliant Micromechanisms
,”
Solid-State Sensor and Actuator Workshop
, pp.
189
,
192
.
Nahar
,
D.
, and
Sugar
,
T. G.
, 2003, “
Compliant Constant-Force Mechanism With a Variable Output for Micro/Macro Applications
,”
IEEE International Conference on Robotics and Automation
, pp.
318
323
.
8.
Sigmund
,
O.
, 1997, “
On The Design of Compliant Mechanisms Using Topology Optimization
,”
Mech. Struct. Mach.
0890-5452,
25
, pp.
495
526
.
9.
Frecker
,
M.
,
Ananthasuresh
,
G. K.
,
Nishiwaki
,
S.
,
Kikuchi
,
N.
, and
Kota
,
S.
, 1997, “
Topological Synthesis of Compliant Mechanisms Using Multi-Criteria Optimization
,”
J. Mech. Des.
1050-0472,
119
(
2
), pp.
238
245
.
10.
Bendsøe
,
M. P.
, and
Sigmund
,
O.
, 2003,
Topology Optimization—Theory, Method and Applications
,
Springer-Verlag
,
Berlin
.
11.
Ananthasuresh
,
G. K.
, 2003,
Optimal Synthesis Methods for MEMS
,
Kluwer Academic
,
Boston
.
12.
Bruns
,
T.
, and
Tortorelli
,
D. A.
, 2001, “
Topology Optimization of Nonlinear Elastic Structures and Compliant Mechanisms
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
190
(
26–27
), pp.
3443
3458
.
13.
Pedersen
,
C. B. W.
,
Buhl
,
T.
, and
Sigmund
,
O.
, 2001, “
Topology Synthesis of Large-Displacement Compliant Mechanisms
,”
Int. J. Numer. Methods Eng.
0029-5981,
50
, pp.
2683
2706
.
14.
Saxena
,
A.
, and
Ananthasuresh
,
G. K.
, 2001, “
Topology Synthesis of Compliant Mechanisms for Nonlinear Force-Deflection and Curved Path Specifications
,”
J. Mech. Des.
1050-0472,
123
, pp.
33
42
.
15.
Saxena
,
A.
, 2005, “
Synthesis of Compliant Mechanisms for Path Generation Using Genetic Algorithm
,”
J. Mech. Des.
1050-0472,
127
, p.
745
.
16.
Pedersen
,
C. B. W.
, 2003a, “
Topology Optimization Design of Crushed 2D-Frames for Desired Energy Absorption History
,”
Struct. Multidiscip. Optim.
1615-147X,
25
(
5–6
), pp.
368
382
.
17.
Pedersen
,
C. B. W.
, 2003b,
Topology Optimization for Crashworthiness of Frame Structures
,
International Journal of Crashworthiness
,
8
(
1
), pp.
29
39
.
18.
Pedersen
,
C. B. W.
, 2003c, “
Topology Optimization of 2D-Frame Structures With Path Dependent Response
,”
Int. J. Numer. Methods Eng.
0029-5981,
57
(
10
), pp.
1471
1501
.
19.
Zhou
,
H.
, and
Ting
,
K.-L.
, 2005, “
Topological Synthesis of Compliant Mechanisms Using Spanning Tree Theory
,”
J. Mech. Des.
1050-0472,
127
, p.
753
.
20.
Wang
,
M. Y.
,
Chen
,
S.
,
Wang
,
X.
, and
Mei
,
Y.
, 2005, “
Design of Multimaterial Compliant Mechanisms Using Level-Set Methods
,”
J. Mech. Des.
1050-0472,
127
, p.
941
.
21.
Howell
,
L.
, 2001,
Compliant Mechanisms
,
Wiley
,
New York
.
22.
Poulsen
,
T. A.
, 2002, “
A Simple Scheme to Prevent Checkerboard Patterns and One-Node Connected Hinges in Topology Optimization
,”
Struct. Multidiscip. Optim.
1615-147X,
24
, pp.
396
399
.
23.
Yin
,
L.
, and
Ananthasuresh
,
G. K.
, 2003, “
Design of Distributed Compliant Mechanisms
,”
Mech. Based Des. Struct. Mach.
1539-7734,
31
, pp.
151
179
.
24.
Rahmatalla
,
S.
, and
Swan
,
C. C.
, 2005, “
Sparse Monolithic Compliant Mechanisms Using Continuum Structural Topology Optimization
,”
Int. J. Numer. Methods Eng.
0029-5981,
62
, pp.
1579
1605
.
25.
Hibbitt
,
H. D.
,
Karlsson
,
B. I.
, and
Sorensen
,
P.
, 2001,
ABAQUS/Standard User’s Manual
, Version 6.2, Providence, RI.
26.
Kawamoto
,
A.
,
Bendsøe
,
M. P.
, and
Sigmund
,
O.
, 2004, “
Articulated Mechanism Design With a Degree of Freedom Constraint
,”
Int. J. Numer. Methods Eng.
0029-5981,
61
(
9
), pp.
1520
1545
.
27.
Sigmund
,
O.
, and
Petersson
,
J.
, 1998, “
Numerical Instabilities in Topology Optimization: A Survey on Procedures Dealing With Checkerboards, Mesh-Dependencies and Local Minima
,”
Struct. Optim.
0934-4373,
16
, pp.
68
75
.
28.
Svanberg
,
K.
, 1987, “
The Method of Moving Asymptotes—A New Method for Structural Optimization
,”
Int. J. Numer. Methods Eng.
0029-5981,
24
, pp.
359
373
.
29.
Buhl
,
T.
,
Pedersen
,
C. B. W.
, and
Sigmund
,
O.
, 2000, “
Stiffness Design of Geometrically Non-Linear Structures Using Topology Optimization
,”
Struct. Multidiscip. Optim.
1615-147X,
19
(
2
), pp.
93
104
.
You do not currently have access to this content.