Engineering design decisions inherently are made under risk and uncertainty. The characterization of this uncertainty is an essential step in the decision process. In this paper, we consider imprecise probabilities (e.g., intervals of probabilities) to express explicitly the precision with which something is known. Imprecision can arise from fundamental indeterminacy in the available evidence or from incomplete characterizations of the available evidence and designer’s beliefs. The hypothesis is that, in engineering design decisions, it is valuable to explicitly represent this imprecision by using imprecise probabilities. This hypothesis is supported with a computational experiment in which a pressure vessel is designed using two approaches, both variations of utility-based decision making. In the first approach, the designer uses a purely probabilistic, precise best-fit normal distribution to represent uncertainty. In the second approach, the designer explicitly expresses the imprecision in the available information using a probability box, or p-box. When the imprecision is large, this p-box approach on average results in designs with expected utilities that are greater than those for designs created with the purely probabilistic approach, suggesting that there are design problems for which it is valuable to use imprecise probabilities.

1.
Elishakoff
,
I.
, 2004,
Safety Factors and Reliability: Friends or Foes?
Kluwer Academic
,
Dordrecht
.
2.
Hazelrigg
,
G. A.
, 1998, “
A Framework for Decision-Based Design
,”
ASME J. Mech. Des.
1050-0472,
120
(
4
), pp.
653
658
.
3.
Fernández
,
M. C.
,
Seepersad
,
C. C.
,
Rosen
,
D. W.
,
Allen
,
J. K.
, and
Mistree
,
F.
, 2001, “
Utility-Based Decision Support for Selection in Engineering Design
,”
ASME DETC Design Automation Conference
,
Pittsburgh, PA
, pp.
DETC2001
∕DAC-
21106
.
4.
Scott
,
M. J.
, 2004, “
Utility Methods in Engineering Design
,”
Engineering Design Reliability Handbook
,
CRC Press
,
New York
.
5.
Thurston
,
D. L.
, 1990, “
Multiattribute Utility Analysis in Design Management
,”
IEEE Trans. Eng. Manage.
0018-9391,
37
(
4
), pp.
296
301
.
6.
Dai
,
Z.
,
Scott
,
M. J.
, and
Mourelatos
,
Z. P.
, 2003, “
Incorporating Epistemic Uncertainty in Robust Design
,”
2003 ASME DETC
,
American Society of Mechanical Engineers
,
Chicago, IL
, Vol.
2A
, pp.
85
95
.
7.
Taguchi
,
G.
, translated by
Tung
,
L. W.
, 1987,
System of Experimental Design: Engineering Methods to Optimize Quality and Minimize Cost
,
UNIPUB∕Kraus International
,
Dearborn, MI
.
8.
Gunawan
,
S.
, and
Azarm
,
S.
, 2005, “
A Feasibility Robust Optimization Method Using Sensitivity Region Concept
,”
ASME J. Mech. Des.
1050-0472,
127
(
5
), p.
858
.
9.
Youn
,
B. D.
, and
Choi
,
K. K.
, 2004, “
Selecting Probabilistic Approaches for Realiability-Based Design Optimization
,”
AIAA J.
0001-1452,
42
(
1
), pp.
124
131
.
10.
Nikolaidis
,
E.
, and
Stroud
,
W. P. J.
, 1996, “
Reliability-Based Optimization—A Proposed Analytical-Experimental Study
,”
AIAA J.
0001-1452,
34
(
10
), pp.
2154
2161
.
11.
Du
,
X.
,
Sudjianto
,
A.
, and
Huang
,
B.
, 2005, “
Reliability-Based Design with the Mixture of Random and Interval Variables
,”
ASME J. Mech. Des.
1050-0472,
127
(
6
), p.
1068
.
12.
Bedford
,
T.
, and
Cooke
,
R. M.
, 2001,
Probabilistic Risk Analysis: Foundations and Methods
,
Cambridge University Press
,
New York
.
13.
Stamatelatos
,
M.
,
Apostolakis
,
G.
,
Dezfuli
,
H.
,
Everline
,
C.
,
Guarro
,
S.
,
Moieni
,
P.
,
Mosleh
,
A.
,
Paulos
,
T.
, and
Youngblood
,
R.
, 2002, “
Probabilistic Risk Assessment Procedures Guide for Nasa Managers and Practitioners
,” Office of Safety and Mission Assurance, NASA, Washington, DC.
14.
Nikolaidis
,
E.
, 2005, “
Types of Uncertainty in Design Decision Making
,”
Engineering Design Reliability Handbook
,
E.
Nikolaidis
,
D. M.
Ghiocel
, and
S.
Singhal
, eds.,
CRC Press
,
New York
.
15.
Ferson
,
S.
, and
Ginzburg
,
L. R.
, 1996, “
Different Methods Are Needed to Propagate Ignorance and Variability
,”
Reliab. Eng. Syst. Saf.
0951-8320,
54
(
2–3
), pp.
133
144
.
16.
Hofer
,
E.
, 1996, “
When to Separate Uncertainties and When Not to Separate
,”
Reliab. Eng. Syst. Saf.
0951-8320,
54
(
2–3
), pp.
113
118
.
17.
Parry
,
G. W.
, 1996, “
The Characterization of Uncertainty in Probabilistic Risk Assessment of Complex Systems
,”
Reliab. Eng. Syst. Saf.
0951-8320,
54
(
2–3
), pp.
119
126
.
18.
Winkler
,
R. L.
, 1996, “
Uncertainty in Probabilistic Risk Assessment
,”
Reliab. Eng. Syst. Saf.
0951-8320,
54
(
2–3
), pp.
127
132
.
19.
Antonsson
,
E. K.
, and
Otto
,
K. N.
, 1995, “
Imprecision in Engineering Design
,”
ASME J. Mech. Des.
1050-0472,
117
, pp.
25
32
.
20.
Cao
,
L.
, and
Rao
,
S. S.
, 2002, “
Optimum Design of Mechanical Systems Involving Interval Parameters
,”
ASME J. Mech. Des.
1050-0472,
124
(
3
), p.
465
.
21.
Nikolaidis
,
E.
,
Chen
,
S.
,
Cudney
,
H.
,
Haftka
,
R. T.
, and
Rosca
,
R.
, 2004, “
Comparison of Probability and Possibility for Design Against Catastrophic Failure Under Uncertainty
,”
ASME J. Mech. Des.
1050-0472,
126
(
3
), pp.
386
394
.
22.
Mourelatos
,
Z. P.
, and
Zhou
,
J.
, 2005, “
Reliability Estimation and Design with Insufficient Data Based on Possibility Theory
,”
AIAA J.
0001-1452,
43
(
8
), p.
1696
.
23.
Knight
,
F. H.
, 1921,
Risk, Uncertainty and Profit
,
Houghton Mifflin
,
Boston
.
24.
Cannon
,
C. M.
, and
Kmietowicz
,
Z. W.
, 1974, “
Decision Theory and Incomplete Knowledge
,”
J. Manage. Stud. (Oxford)
0022-2380,
11
(
3
), pp.
224
232
.
25.
Fishburn
,
P.
, 1964,
Decision and Value Theory
,
Wiley
,
New York
.
26.
Kmietowicz
,
Z. W.
, and
Pearman
,
A. D.
, 1984, “
Decision Theory, Linear Partial Information and Statistical Dominance
,”
Omega
0305-0483,
12
, pp.
391
399
.
27.
Weber
,
M.
, 1987, “
Decision Making with Incomplete Information
,”
Eur. J. Oper. Res.
0377-2217,
28
(
1
), p.
44
.
28.
Carnahan
,
J. V.
,
Thurston
,
D. L.
, and
Liu
,
T.
, 1994, “
Fuzzy Ratings for Multiattribute Design Decision-Making
,”
ASME J. Mech. Des.
1050-0472,
116
(
2
), p.
511
.
29.
Otto
,
K. N.
, and
Antonsson
,
E. K.
, 1992, “
The Method of Imprecision Compared to Utility Theory for Design Selection Problems
,”
ASME 1993 Design Theory and Methodology Conference
.
30.
Seidenfeld
,
T.
,
Schervish
,
M. J.
, and
Kadane
,
J. B.
, 1995, “
A Representation of Partially Ordered Preferences
,”
Ann. Stat.
0090-5364,
23
(
9
), pp.
2168
2217
.
31.
Kirkwood
,
C. W.
, and
Sarin
,
R. K.
, 1985, “
Ranking with Partial Information: A Method and an Application
,”
Oper. Res.
0030-364X,
33
, pp.
38
48
.
32.
Keynes
,
J. M.
, 1962,
A Treatise on Probability
,
Harper and Row
,
New York
.
33.
Good
,
I. J.
, 1983,
Good Thinking: The Foundations of Probability and Its Applications
,
University of Minnesota Press
,
Minneapolis
.
34.
Kyburg
,
H. E.
, 1987, “
Objective Probabilities
,”
IJCAI-87
, pp.
902
904
.
35.
Sarin
,
R. K.
, 1978, “
Elicitation of Subjective Probabilities in the Context of Decision-Making
,”
Decision Sci.
0011-7315,
9
, pp.
37
48
.
36.
Walley
,
P.
, 1991,
Statistical Reasoning with Imprecise Probabilities
,
Chapman and Hall
,
New York
.
37.
Weichselberger
,
K.
, 2000, “
The Theory of Interval-Probability as a Unifying Concept for Uncertainty
,”
Int. J. Approx. Reason.
0888-613X,
24
(
2–3
), p.
149
.
38.
Hart
,
A. G.
, 1942, “
Risk, Uncertainty and the Unprofitability of Compounding Probabilities
,”
Studies in Mathematical Economics and Econometrics
,
O.
Lange
,
F.
Mcintyre
, and
T. O.
Yntema
, eds.,
University of Chicago Press
,
Chicago
.
39.
Levi
,
I.
, 1974, “
On Indeterminate Probabilities
,”
J. Philos.
0022-362X,
71
, pp.
391
418
.
40.
Tintner
,
G.
, 1941, “
The Theory of Choice under Subjective Risk and Uncertainty
,”
Econometrica
0012-9682,
9
, pp.
298
304
.
41.
Joslyn
,
C. A.
, and
Booker
,
J. M.
, 2005, “
Generalized Information Theory for Engineering Modeling and Simulation
,”
Engineering Design Reliability Handbook
,
E.
Nikolaidis
,
D. M.
Ghiocel
, and
S.
Singhal
, eds.,
CRC Press
,
New York
, pp.
9.1
9.40
.
42.
de Finetti
,
B.
, 1974,
Theory of Probability Volume 1: A Critical Introductory Treatment
,
Wiley
,
New York
.
43.
Savage
,
L. J.
, 1972,
The Foundation of Statistics
,
Dover
,
New York
.
44.
Lindley
,
D. V.
, 2000, “
The Philosophy of Statistics
,”
J. R. Stat. Soc. Series D
,
49
(
3
), p.
293
337
.
45.
Lindley
,
D. V.
, 1982, “
Subjectivist View of Decision Making
,”
Eur. J. Oper. Res.
0377-2217,
9
(
3
), p.
213
.
46.
Groen
,
F. J.
, and
Mosleh
,
A.
, 2005, “
Foundations of Probabilistic Inference with Uncertain Evidence
,”
Int. J. Approx. Reason.
0888-613X,
39
(
1
), pp.
49
83
.
47.
de Finetti
,
B.
, 1937, “
La Prevision: Ses Lois Logiques, Ses Sources Subjectives
,”
Ann. Inst. Henri Poincare
0365-320X,
7
, pp.
1
68
;
English translation 1964, “
Foresight. Its Logical Laws, Its Subjective Sources
,” in
Studies in Subjective Probability
,
H. E.
Kyburg
, and
H. E.
Smokler
, eds.,
Wiley
,
New York
.
48.
Berger
,
J. O.
, 1985,
Statistical Decision Theory and Bayesian Analysis
, 2nd.
Springer
,
New York
.
49.
Arrow
,
K.
, and
Hurwicz
,
L.
, 1972, “
An Optimality Criterion for Decision-Making under Uncertainty
,”
Uncertainty and Expectation in Economics: Essays in Honour of G. L. S. Shackle
,
C. F.
Carter
and
J.
Ford
, eds.,
Blackwell
,
Oxford
, pp.
1
11
.
50.
Lindley
,
D. V.
, 1982, “
Scoring Rules and the Inevitability of Probability
,”
Geogr. Rev.
0016-7428,
50
, pp.
1
16
.
51.
Kolmogorov
,
A. N.
, translated by
Morrison
,
N.
, 1956,
Foundations of Probability
,
Chelsea
,
New York
.
52.
Helton
,
J. C.
, 1994, “
Treatment of Uncertainty in Performance Assessments for Complex Systems
,”
Risk Anal.
0272-4332,
14
, pp.
483
511
.
53.
Pratt
,
J. W.
,
Raiffa
,
H.
, and
Schlaifer
,
R.
, 1995,
Introduction to Statistical Decision Theory
,
The MIT Press
,
Cambridge, MA
.
54.
von Neumann
,
J.
, and
Morgenstern
,
O.
, 1980,
Theory of Games and Economic Behavior
,
3rd ed.
,
Princeton University Press
,
Princeton, NJ
.
55.
Zadeh
,
L. A.
, 1965, “
Fuzzy Sets
,”
Inf. Control.
0019-9958,
8
, pp.
338
353
.
56.
Zadeh
,
L. A.
, 1978, “
Fuzzy Sets as a Basis for a Theory of Possibility
,”
Fuzzy Sets Syst.
0165-0114,
1
, pp.
3
28
.
57.
Sugeno
,
M.
, 1977, “
Fuzzy Measures and Fuzzy Integrals: A Survey
,”
Fuzzy Automata and Decision Processes
,
M. M.
Gupta
,
G. N.
Saridis
, and
B. R.
Gaines
, eds.,
North-Holland
,
New York
, pp.
89
102
.
58.
Smets
,
P.
, 1988, “
Belief Functions, in Non-Standard Logics for Automated Reasoning
,”
P.
Smets
,
A.
Mandami
,
D.
Dubois
, and
H.
Prade
, eds.,
Academic
,
New York
, pp.
252
286
.
59.
Shafer
,
G.
, 1992, “
Rejoinders to Comments on “Perspectives on the Theory and Practice of Belief Functions”
,”
Int. J. Approx. Reason.
0888-613X,
6
(
3
), pp.
445
480
.
60.
Cooke
,
R.
, 2004, “
The Anatomy of the Squizzel—the Role of Operational Definitions in Representing Uncertainty
,”
Reliab. Eng. Syst. Saf.
0951-8320,
85
(
1–3
), p.
313
.
61.
Vose
,
D.
, 2000,
Risk Analysis, a Quantitative Guide
,
2nd ed.
,
Wiley
,
New York
.
62.
Hofer
,
E.
,
Kloos
,
M.
,
Krzykacz-Hausmann
,
B.
,
Peschke
,
J.
, and
Woltereck
,
M.
, 2002, “
An Approximate Epistemic Uncertainty Analysis Approach in the Presence of Epistemic and Aleatory Uncertainties
,”
Reliab. Eng. Syst. Saf.
0951-8320,
77
(
3
), pp.
229
238
.
63.
Ferson
,
S.
, and
Donald
,
S.
, 1998, “
Probability Bounds Analysis
,”
International Conference on Probabilistic Safety Assessment and Management (PSAM4)
,
Springer-Verlag
,
New York
, pp.
1203
1208
.
64.
Ferson
,
S.
,
Hajagos
,
J.
,
Myers
,
D. S.
, and
Tucker
,
W. T.
, 2005, “
Constructor: Synthesizing Information About Uncertain Variables
,” SAND2005–3769, Sandia National Laboratories, Albuquerque, NM.
65.
Ferson
,
S.
,
Kreinovich
,
V.
,
Ginzburg
,
L.
,
Myers
,
D. S.
, and
Sentz
,
K.
, 2002, “
Constructing Probability Boxes and Dempster-Shafer Structures
,” SAND2002–4015, Sandia National Laboratories, Albuquerque, NM.
66.
Aughenbaugh
,
J. M.
, and
Paredis
,
C. J. J.
, 2005, “
The Value of Using Imprecise Probabilities in Engineering Design
,”
ASME 2005 DETC DTM
,
Long Beach, CA
, pp.
DETC2005
85354
.
67.
Utkin
,
L. V.
, and
Augustin
,
T.
, 2003, “
Decision Making with Imprecise Second-Order Probabilities
,”
Proceedings of the Third International Symposium on Imprecise Probabilities and Their Applications
,
Lugano, Switzerland
.
68.
Aughenbaugh
,
J. M.
,
Ling
,
J. M.
, and
Paredis
,
C. J. J.
, 2005, “
Applying Information Economics and Imprecise Probabilities to Data Collection in Design
,”
2005 ASME International Mechanical Engineering Congress and Exposition
, Paper No. IMECE2005–81181,
Orlando, FL
.
69.
Berleant
,
D.
,
Xie
,
L.
, and
Zhang
,
J.
, 2003, “
Statool: A Tool for Distribution Envelope Determination (DEnv), An Interval-Based Algorithm for Arithmetic on Random Variables
,”
Reliable Comput.
,
9
(
2
), pp.
91
108
.
70.
Ferson
,
S.
, 2002,
Ramas Risk Calc
,
4th ed.
,
Lewis
,
New York
.
71.
Williamson
,
R. C.
, and
Downs
,
T.
, 1990, “
Probabilistic Arithmetic I: Numerical Methods for Calculating Convolutions and Dependency Bounds
,”
Int. J. Approx. Reason.
0888-613X,
4
, pp.
89
158
.
72.
Robert
,
C. P.
, and
Casella
,
G.
, 1999,
Monte Carlo Statistical Methods
,
Springer-Verlag
,
New York
.
73.
Myers
,
R. H.
, and
Montgomery
,
D. C.
, 1995,
Response Surface Methodology: Process and Product Optimization Using Designed Experiments
,
Wiley
,
New York
.
74.
Simpson
,
T. W.
,
Peplinski
,
J. D.
,
Koch
,
P. N.
, and
Allen
,
J. K.
, 2001, “
Metamodels for Computer-Based Engineering Design
,”
Eng. Comput.
0177-0667,
17
(
2
), pp.
129
150
.
You do not currently have access to this content.