The use of computer experiments and surrogate approximations (metamodels) introduces a source of uncertainty in simulation-based design that we term model interpolation uncertainty. Most existing approaches for treating interpolation uncertainty in computer experiments have been developed for deterministic optimization and are not applicable to design under uncertainty in which randomness is present in noise and/or design variables. Because the random noise and/or design variables are also inputs to the metamodel, the effects of metamodel interpolation uncertainty are not nearly as transparent as in deterministic optimization. In this work, a methodology is developed within a Bayesian framework for quantifying the impact of interpolation uncertainty on the robust design objective, under consideration of uncertain noise variables. By viewing the true response surface as a realization of a random process, as is common in kriging and other Bayesian analyses of computer experiments, we derive a closed-form analytical expression for a Bayesian prediction interval on the robust design objective function. This provides a simple, intuitively appealing tool for distinguishing the best design alternative and conducting more efficient computer experiments. We illustrate the proposed methodology with two robust design examples—a simple container design and an automotive engine piston design with more nonlinear response behavior and mixed continuous-discrete design variables.

1.
Chang
,
K. H.
,
Choi
,
K. K.
,
Wang
,
J.
,
Tsai
,
C. S.
, and
Hardee
,
E.
, 1998, “
A Multilevel Product Model for Simulation-based Design of Mechanical Systems
,”
Concurr. Eng. Res. Appl.
1063-293X,
6
(
2
), pp.
131
144
.
2.
Parry
,
J.
,
Bornoff
,
R. B.
,
Stehouwer
,
P.
,
Driessen
,
L. T.
, and
Stinstra
,
E.
, 2004, “
Simulation-Based Design Optimization Methodologies Applied to CFD
,”
IEEE Trans. Compon., Hybrids, Manuf. Technol.
0148-6411,
27
(
2
), pp.
391
397
.
3.
Horstemeyer
,
M. F.
, and
Wang
,
P.
, 2003, “
Cradle-to-Grave Simulation-Based Design Incorporating Multiscale Microstructure-Property Modeling: Reinvigorating Design With Science
,”
J. Comput.-Aided Mater. Des.
0928-1045,
10
(
1
), pp.
13
34
.
4.
Parkinson
,
A.
, 1995, “
Robust Mechanical Design Using Engineering Models
,”
ASME J. Mech. Des.
1050-0472,
117
(Sp. Iss. B), pp.
48
54
.
5.
Chen
,
W.
,
Allen
,
J. K.
,
Tsui
,
K. L.
, and
Mistree
,
F.
, 1996, “
A Procedure for Robust Design: Minimizing Variations Caused by Noise Factors and Control Factors
,”
ASME J. Mech. Des.
1050-0472,
118
(
4
), pp.
478
485
.
6.
Du
,
X. P.
, and
Chen
,
W.
, 2000, “
Towards a Better Understanding of Modeling Feasibility Robustness in Engineering Design
,”
ASME J. Mech. Des.
1050-0472,
122
(
4
), pp.
385
394
.
7.
Thornton
,
A. C.
, 2001, “
Optimism vs. Pessimism: Design Decisions in the Face of Process Capability Uncertainty
,”
ASME J. Mech. Des.
1050-0472,
123
(
3
), pp.
313
321
.
8.
Suri
,
R.
, and
Otto
,
K.
, 2001, “
Manufacturing System Robustness Through Integrated Modeling
,”
ASME J. Mech. Des.
1050-0472,
123
(
4
), pp.
630
636
.
9.
Kalsi
,
M.
,
Hacker
,
K.
, and
Lewis
,
K.
, 2001, “
A Comprehensive Robust Design Approach for Decision Trade-Offs in Complex Systems Design
,”
ASME J. Mech. Des.
1050-0472,
123
(
1
), pp.
1
10
.
10.
Hernandez
,
G.
,
Allen
,
J. K.
,
Woodruff
,
G. W.
,
Simpson
,
T. W.
,
Bascaran
,
E.
,
Avila
,
L. F.
, and
Salinas
,
F.
, 2001, “
Robust Design of Families of Products With Production Modeling and Evaluation
,”
ASME J. Mech. Des.
1050-0472,
123
(
2
), pp.
183
190
.
11.
McAllister
,
C. D.
, and
Simpson
,
T. W.
, 2003, “
Multidisciplinary Robust Design Optimization of an Internal Combustion Engine
,”
ASME J. Mech. Des.
1050-0472,
125
(
1
), pp.
124
130
.
12.
Du
,
X. P.
, and
Chen
,
W.
, 2004, “
Sequential Optimization and Reliability Assessment Method for Efficient Probabilistic Design
,”
ASME J. Mech. Des.
1050-0472,
126
(
2
), pp.
225
233
.
13.
Gunawan
,
S.
, and
Azarm
,
S.
, 2004, “
Non-Gradient Based Parameter Sensitivity Estimation for Single Objective Robust Design Optimization
,”
ASME J. Mech. Des.
1050-0472,
126
(
3
), pp.
395
402
.
14.
Koch
,
P. N.
,
Yang
,
R. J.
, and
Gu
,
L.
, 2004, “
Design for Six Sigma Through Robust Optimization
,”
Struct. Multidiscip. Optim.
1615-147X,
26
(
3–4
), pp.
235
248
.
15.
Al-Widyan
,
K.
, and
Angeles
,
J.
, 2005, “
A Model-Based Formulation of Robust Design
,”
ASME J. Mech. Des.
1050-0472,
127
(
3
), pp.
388
396
.
16.
Chen
,
W.
,
Wiecek
,
M. M.
, and
Zhang
,
J.
, 1999, “
Quality Utility—A Compromise Programming Approach to Robust Design
,”
ASME J. Mech. Des.
1050-0472,
121
(
2
), pp.
179
187
.
17.
Du
,
X. P.
,
Sudjianto
,
A.
, and
Chen
,
W.
, 2004, “
An Integrated Framework for Optimization Under Uncertainty Using Inverse Reliability Strategy
,”
ASME J. Mech. Des.
1050-0472,
126
(
4
), pp.
562
570
.
18.
Tu
,
J.
,
Choi
,
K. K.
, and
Park
,
Y. H.
, 2001, “
Design Potential Method for Robust System Parameter Design
,”
AIAA J.
0001-1452,
39
(
4
), pp.
667
677
.
19.
Zou
,
T.
,
Mahadevan
,
S.
,
Mourelatos
,
Z.
, and
Meernik
,
P.
, 2002, “
Reliability Analysis of Automotive Body-Door Subsystem
,”
Materialwiss. Werkstofftech.
0933-5137,
78
(
3
), pp.
315
324
.
20.
Youn
,
B. D.
,
Choi
,
K. K.
, and
Park
,
Y. H.
, 2003, “
Hybrid Analysis Method for Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
1050-0472,
125
(
2
), pp.
221
232
.
21.
Yang
,
R. J.
,
Akkerman
,
A.
,
Anderson
,
D. F.
,
Faruque
,
O. M.
, and
Gu
,
L.
, 2000, “
Robustness Optimization for Vehicular Crash Simulations
,”
Rep. Sci. Res. Inst.
0368-5934,
2
(
6
), pp.
8
13
.
22.
Kleijnen
,
J. P. C.
, 1987,
Statistical Tools for Simulation Practitioners
,
Marcel Dekker
,
New York
.
23.
Simpson
,
T. W.
,
Peplinski
,
J.
,
Koch
,
P. N.
, and
Allen
,
J. K.
, 2001, “
Metamodels for Computer Based Engineering Design: Survey and Recommendations
,”
Eng. Comput.
0177-0667,
17
(
2
), pp.
129
150
.
24.
Barthelemy
,
J.-F. M.
, and
Haftka
,
R. T.
, 1993, “
Approximation Concepts for Optimum Structural Design—A Review
,”
Struct. Optim.
0934-4373,
5
, pp.
129
144
.
25.
Sobieszczanski-Sobieski
,
J.
, and
Haftka
,
R. T.
, 1997, “
Multidisciplinary Aerospace Design Optimization: Survey of Recent Developments
,”
Struct. Optim.
0934-4373,
14
, pp.
1
23
.
26.
Box
,
G. E. P.
,
Hunter
,
W. G.
, and
Hunter
,
J. S.
, 1978,
Statistics for Experimenters
,
Wiley
,
New York
.
27.
Sacks
,
J.
,
Welch
,
W. J.
,
Mitchell
,
T. J.
, and
Wynn
,
H. P.
, 1989, “
Design and Analysis of Computer Experiments
,”
Stat. Sci.
0883-4237,
4
(
4
), pp.
409
435
.
28.
Currin
,
C.
,
Mitchell
,
T.
,
Morris
,
M. D.
, and
Ylvisaker
,
D.
, 1991, “
Bayesian Prediction of Deterministic Functions, With Applications to the Design and Analysis of Computer Experiments
,”
J. Am. Stat. Assoc.
0162-1459,
86
(
416
), pp.
953
963
.
29.
Hardy
,
R. L.
, 1971, “
Multiquadratic Equations of Topography and Other Irregular Surfaces
,”
J. Geophys. Res.
0148-0227,
76
, pp.
1905
1915
.
30.
Dyn
,
N.
,
Levin
,
D.
, and
Rippa
,
S.
, 1986, “
Numerical Procedures for Surface Fitting of Scattered Data by Radial Basis Functions
,”
SIAM (Soc. Ind. Appl. Math.) J. Sci. Stat. Comput.
0196-5204,
7
(
2
), pp.
639
659
.
31.
Mullur
,
A. A.
, and
Messac
,
A.
, 2005, “
Extended Radial Basis Functions: More Flexible and Effective Metamodeling
,”
AIAA J.
0001-1452,
43
(
6
), pp.
1306
1315
.
32.
Meckesheimer
,
M.
,
Barton
,
R. R.
,
Simpson
,
T.
,
Limayen
,
F
, and
Yannou
,
B.
, 2001, “
Metamodeling of Combined Discrete/Continuous Responses
,”
AIAA J.
0001-1452,
39
(
10
), pp.
1950
1959
.
33.
Meckesheimer
,
M.
,
Booker
,
A. J.
,
Barton
,
R. R.
, and
Simpson
,
T. W.
, 2002, “
Computationally Inexpensive Metamodel Assessment Strategies
,”
AIAA J.
0001-1452,
40
(
10
), pp.
2053
2060
.
34.
Martin
,
J. D.
, and
Simpson
,
T. W.
, 2005, “
Use of Kriging Models to Approximate Deterministic Computer Models
,”
AIAA J.
0001-1452,
43
(
4
), pp.
853
863
.
35.
Sasena
,
M. J.
,
Papalambros
,
P.
, and
Goovaerts
,
P.
, 2002, “
Exploration of Metamodeling Sampling Criteria for Constrained Global Optimization
,”
Eng. Optimiz.
0305-215X,
34
(
3
), pp.
263
278
.
36.
Wang
,
G. G.
, 2003, “
Adaptive Response Surface Method using inherited Latin Hypercube Design points
,”
ASME J. Mech. Des.
1050-0472,
125
(
2
), pp.
210
220
.
37.
Romero
,
V. J.
,
Swiler
,
L. P.
, and
Giunta
,
A. A.
, 2004, “
Construction of Response Surfaces Based on Progressive-Lattice-Sampling Experimental Designs With Application to Uncertainty Propagation
,”
Struct. Safety
0167-4730,
26
(
2
), pp.
201
219
.
38.
Perez
,
V. M.
,
Renaud
,
J. E.
, and
Watson
,
L. T.
, 2004, “
An Interior-Point Sequential Approximate Optimization Methodology
,”
Struct. Multidiscip. Optim.
1615-147X,
27
(
5
), pp.
360
370
.
39.
Farhang Mehr
,
A.
, and
Azarm
,
S.
, 2005, “
Bayesian Meta-Modeling of Engineering Design Simulations: A Sequential Approach With Adaptation to Irregularities in the Response Behavior
,”
Int. J. Numer. Methods Eng.
0029-5981,
62
(
15
), pp.
2104
2126
.
40.
Lin
,
Y.
,
Mistree
,
F.
,
Allen
,
J. K.
,
Tsui
,
K.-L.
, and
Chen
,
V.
, 2004, “
Sequential Metamodeling in Engineering Design
,”
AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference
, Albany, NY. Paper No. AIAA-2004-4304.
41.
Gu
,
L.
,
Yang
,
R. J.
,
Tho
,
C. H.
,
Makowski
,
M.
,
Faruque
,
O.
, and
Li
,
Y.
, 2001, “
Optimization and Robustness for Crashworthiness of Side Impact
,”
Int. J. Veh. Des.
0143-3369,
26
(
4
), pp.
348
360
.
42.
Chen
,
W.
,
Jin
,
R.
, and
Sudjianto
,
A.
, 2005, “
Analytical Global Sensitivity Analysis and Uncertainty Propagation for Robust Design
,”
J. Quality Technol.
0022-4065, in press.
43.
Kennedy
,
M. C.
, and
O’Hagan
,
A.
, 2001, “
Bayesian Calibration of Computer Experiments
,”
J. R. Stat. Soc. Ser. B. Methodol.
0035-9246,
63
, pp.
425
464
.
44.
Handcock
,
M. S.
, and
Stein
,
M. L.
, 1993, “
A Bayesian Analysis of Kriging
,”
Technometrics
0040-1706,
35
, pp.
403
410
.
45.
Jones
,
D. R.
,
Schonlau
,
M.
, and
Welch
,
W. J.
, 1998, “
Efficient Global Optimization of Expensive Black-Box Functions
,”
J. Global Optim.
0925-5001,
13
, pp.
455
492
.
46.
Pacheco
,
J. E.
,
Amon
,
C. H.
, and
Finger
,
S.
, 2003, “
Bayesian Surrogates Applied to Conceptual Stages of the Engineering Design Process
,”
ASME J. Mech. Des.
1050-0472,
125
(
4
), pp.
664
672
.
47.
Jin
,
R.
,
Du
,
X.
, and
Chen
,
W.
, 2003, “
The Use of Metamodeling Techniques for Optimization Under Uncertainty
,”
Struct. Multidiscip. Optim.
1615-147X,
25
(
2
), pp.
99
116
.
48.
Duffin
,
R. J.
,
Peterson
,
E. L.
, and
Zener
,
C.
, 1967,
Geometric Programming
,
Wiley
,
New York
, p.
5
.
49.
Steinberg
,
D. M.
, and
Bursztyn
,
D.
, 2004, “
Data Analytic Tools for Understanding Random Field Regression Models
,”
Technometrics
0040-1706,
46
(
4
), pp.
411
420
.
50.
Matheron
,
G.
, 1963, “
Principles of Geostatistics
,”
Econ. Geol.
0361-0128,
58
, pp.
1246
1266
.
51.
O’Hagan
,
A.
, 1992, “
Some Bayesian Numerical Analysis
,” in
Bayesian Statistics 4
,
J. M.
Bernardo
,
J. O.
Berger
,
A. P.
Dawid
, and
A. F. M.
Smith
, eds.
Oxford University Press
,
New York
, pp.
345
363
.
52.
Montgomery
,
D. C.
,
Peck
,
E. A.
, and
Vining
,
G. G.
, 2001,
Introduction to Linear Regression Analysis
,
3rd ed.
,
Wiley
,
New York
.
53.
Haylock
,
R. G.
, and
O’Hagan
,
A.
, 1996, “
On Inference for Outputs of Computationally Expensive Algorithms With Uncertainty on the Inputs
,” in
Bayesian Statistics 5
J. M.
Bernardo
,
J. O.
Berger
,
A. P.
Dawid
and
A. F. M.
Smith
, eds.
Oxford University Press
,
New York
, pp.
629
37
.
54.
Oakley
,
J.
, and
O’Hagan
,
A.
, 2002, “
Bayesian Inference for the Uncertainty Distribution of Computer Model Outputs
,”
Biometrika
0006-3444,
89
(
4
), pp.
769
784
.
55.
Van Trees
,
H. L.
, 1968,
Detection, Estimation, and Modulation Theory, Part I
,
Wiley
,
New York
, p.
177
.
56.
Jin
,
R.
,
Chen
,
W.
, and
Sudjianto
,
A.
, 2004, “
Analytical Metamodel-Based Global Sensitivity Analysis and Uncertainty Propagation for Robust Design
,” SAE Trans. Journal of Materials and Manufacturing, paper 2004-01–0429.
57.
Martin
,
J. D.
, and
Simpson
,
T. W.
, 2004, “
A Monte Carlo Simulation of the Kriging Model
,”
10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference
, Albany, NY.
58.
Martin
,
J. D.
, 2005, “
A Methodology for Evaluating System-level Uncertainty in the Conceptual Design of Complex Multidisciplinary Systems
,” Ph.D. thesis, The Pennsylvania State University.
59.
Carlin
,
B. P.
, and
Louis
,
T. A.
, 2000,
Bayes and Empirical Bayes Methods for Data Analysis
,
2nd ed.
,
Chapman & Hall/CRC
,
New York
.
You do not currently have access to this content.