In engineering design, information regarding the uncertain variables or parameters is usually in the form of finite samples. Existing methods in optimal design under uncertainty cannot handle this form of incomplete information; they have to either discard some valuable information or postulate existence of additional information. In this article, we present a reliability-based optimization method that is applicable when information of the uncertain variables or parameters is in the form of both finite samples and probability distributions. The method adopts a Bayesian binomial inference technique to estimate reliability, and uses this estimate to maximize the confidence that the design will meet or exceed a target reliability. The method produces a set of Pareto trade-off designs instead of a single design, reflecting the levels of confidence about a design’s reliability given certain incomplete information. As a demonstration, we apply the method to design an optimal piston-ring/cylinder-liner assembly under surface roughness uncertainty.

1.
Zhao
,
Y. G.
, and
Ono
,
T.
, 1999, “
A General Procedure for First/Second-Order Reliability Method (FORM/SORM)
,”
Struct. Safety
0167-4730,
21
(
2
), pp.
95
112
.
2.
Chiralaksanakul
,
A.
, and
Mahadevan
,
S.
, 2005, “
First-Order Approximation Methods in Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
1050-0472,
127
(
5
), pp.
851
857
.
3.
Parkinson
,
A.
,
Sorensen
,
C.
, and
Pourhassan
,
N.
, 1993, “
A General Approach for Robust Optimal Design
,”
ASME J. Mech. Des.
1050-0472,
115
(
1
), pp.
74
80
.
4.
Jung
,
D. H.
, and
Lee
,
B. C.
, 2002, “
Development of a Simple and Efficient Method for Robust Optimization
,”
Int. J. Numer. Methods Eng.
0029-5981,
53
(
9
), pp.
2201
2215
.
5.
Au
,
S. K.
, and
Beck
,
J. L.
, 1999, “
New Adaptive Importance Sampling Scheme for Reliability Calculations
,”
Struct. Safety
0167-4730,
21
(
2
), pp.
135
158
.
6.
Wu
,
Y. T.
,
Millwater
,
H. R.
, and
Cruse
,
T. A.
, 1990, “
Advanced Probabilistic Structural Analysis Method for Implicit Performance Functions
,”
AIAA J.
0001-1452,
28
(
9
), pp.
1663
1669
.
7.
Youn
,
B. D.
,
Choi
,
K. K.
, and
Park
,
Y. H.
, 2003, “
Hybrid Analysis Method for Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
1050-0472,
125
(
2
), pp.
221
232
.
8.
Du
,
X.
, and
Chen
,
W.
, 2004, “
Sequential Optimization and Reliability Assessment Method for Efficient Probabilistic Design
,”
ASME J. Mech. Des.
1050-0472,
126
(
2
), pp.
225
233
.
9.
Liang
,
J.
,
Mourelatos
,
Z. P.
, and
Tu
,
J.
, 2004, “
A Single Loop Method for Reliability-Based Design Optimization
,”
In Proc. of ASME DETC’04
,
Salt Lake City, UT
, Sept. 28–Oct. 2 Paper No. DETC2004–57255.
10.
Rao
,
S. S.
, and
Cao
,
L.
, 2002, “
Optimum Design of Mechanical Systems Involving Interval Parameters
,”
ASME J. Mech. Des.
1050-0472,
124
(
3
), pp.
465
472
.
11.
Parkinson
,
A.
, 1995, “
Robust Mechanical Design Using Engineering Models
,”
ASME J. Mech. Des.
1050-0472,
117
(
1
), pp.
48
54
.
12.
Penmetsa
,
R. C.
, and
Grandhi
,
R. V.
, 2002, “
Efficient Estimation of Structural Reliability for Problems With Uncertain Intervals
,”
Comput. Struct.
0045-7949,
80
(
12
), pp.
1103
1112
.
13.
Lombardi
,
M.
, and
Haftka
,
R.
, 1998, “
Anti-Optimization Technique for Structural Design Under Load Uncertainties
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
157
(
1
), pp.
19
31
.
14.
Gunawan
,
S.
, and
Azarm
,
S.
, 2005, “
A Feasibility Robust Optimization Method Using Sensitivity Region Concept
,”
ASME J. Mech. Des.
1050-0472,
127
(
5
), pp.
858
865
.
15.
Du
,
X.
, and
Sudjianto
,
A.
, 2005, “
Reliability-Based Design With the Mixture of Random and Interval Variables
,”
ASME J. Mech. Des.
1050-0472,
127
(
6
), pp.
1068
1076
.
16.
Zong
,
Z.
, and
Lam
,
K. Y.
, 2000, “
Bayesian Estimation of Complicated Distributions
,”
Struct. Safety
0167-4730,
22
(
1
), pp.
81
95
.
17.
Zong
,
Z.
, and
Lam
,
K. Y.
, 2001, “
Bayesian Estimation of 2-Dimensional Complicated Distributions
,”
Struct. Safety
0167-4730,
23
(
2
), pp.
105
121
.
18.
Theil
,
H.
, and
Fiebig
,
D. G.
, 1984,
Exploiting Continuity: Maximum Entropy Estimation of Continuous Distributions
,
Ballinger
,
Cambridge, MA
.
19.
Choi
,
K. K.
,
Diu
,
L.
, and
Youn
,
B. D.
, 2004, “
A New Fuzzy Analysis Method for Possibility-Based Design Optimization
,”
In Proc. of the 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conf.
,
Albany, NY
, Aug. 30–Sept. 1, Paper No. AIAA2004–4585.
20.
Mourelatos
,
Z. P.
, and
Zhou
,
J.
, 2004, “
Reliability Estimation and Design With Insufficient Data Based on Possibility Theory
,”
In Proc. of the 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conf.
,
Albany, NY
, Aug. 30–Sept. 1, Paper No. AIAA2004–4586.
21.
Agarwal
,
H.
, 2004, “
Reliability Based Design Optimization: Formulations and Methodologies
,” Ph.D dissertation, University of Notre Dame, South Bend, IN.
22.
Langley
,
R. S.
, 2000, “
Unified Approach to Probabilistic and Possibilistic Analysis of Uncertain Systems
,”
J. Eng. Mech. Div., Am. Soc. Civ. Eng.
0044-7951,
126
(
11
), pp.
1163
1172
.
23.
Nikolaidis
,
E.
,
Chen
,
S.
,
Cudney
,
H.
,
Haftka
,
R. T.
, and
Rosca
,
R.
, 2004, “
Comparison of Probability and Possibility for Design Against Catastrophic Failure Under Uncertainty
,”
ASME J. Mech. Des.
1050-0472,
126
(
3
), pp.
386
394
.
24.
Lindley
,
D. V.
, 1965,
Introduction to Probability and Statistics From a Bayesian Viewpoint: Part 1 and 2
,
Cambridge University Press
,
London
.
25.
Lee
,
P. M.
, 1989,
Bayesian Statistics: An Introduction
,
Oxford University Press
,
New York
.
26.
Congdon
,
P.
, 2004,
Bayesian Statistical Modeling
,
Wiley Series in Probability and Statistics
,
Wiley
,
New York
.
27.
Deb
,
K.
, 2001,
Multi-Objective Optimization Using Evolutionary Algorithms
,
Wiley
,
New York
.
28.
Papalambros
,
P. Y.
, and
Wilde
,
D. J.
, 2000,
Principles of Optimal Design: Modeling and Computation
,
2nd ed.
,
Cambridge University Press
,
New York
.
29.
Chan
,
K. Y.
,
Kokkolaras
,
M.
,
Mourelatos
,
Z.
,
Papalambros
,
P.
, and
Skerlos
,
S.
, 2004, “
Propagation of Uncertainty in Optimal Design of Multilevel Systems—A Case Study in Piston Ring/Cylinder Liner Subassembly
,”
SAE Trans. J. Mater. Manu.
, SAE Paper No. 2004–01–1559.
You do not currently have access to this content.