Probabilistic design optimization addresses the presence of uncertainty in design problems. Extensive studies on reliability-based design optimization, i.e., problems with random variables and probabilistic constraints, have focused on improving computational efficiency of estimating values for the probabilistic functions. In the presence of many probabilistic inequality constraints, computational costs can be reduced if probabilistic values are computed only for constraints that are known to be active or likely active. This article presents an extension of monotonicity analysis concepts from deterministic problems to probabilistic ones, based on the fact that several probability metrics are monotonic transformations. These concepts can be used to construct active set strategies that reduce the computational cost associated with handling inequality constraints, similarly to the deterministic case. Such a strategy is presented as part of a sequential linear programming algorithm along with numerical examples.

1.
Au
,
S. K.
, and
Beck
,
J. L.
, 1999, “
New Adaptive Importance Sampling Scheme for Reliability Calculations
,”
Struct. Safety
0167-4730,
21
(
2
), pp.
135
158
.
2.
Kalagnanam
,
J. R.
, and
Diwekar
,
U. M.
, 1997, “
An Efficient Sampling Technique for Off-Line Quality Control
,”
Technometrics
0040-1706,
39
(
3
), pp.
308
319
.
3.
Halder
,
A.
, and
Mahadevan
,
S.
, 1999,
Probability, Reliability and Statistical Methods in Engineering Design
,
John Wiley and Sons
, New York.
4.
Hasofer
,
A. M.
, and
Lind
,
N. C.
, 1974, “
Exact and Invariant Second-Moment Code Format
,”
J. Eng. Mech. Div., Am. Soc. Civ. Eng.
0044-7951,
100
(
EM1
), pp.
111
121
.
5.
Hohenbichler
,
M.
, and
Rackwitz
,
R.
, 1983, “
First-Order Concepts in System Reliability
,”
Struct. Safety
0167-4730,
1
(
3
), pp.
177
188
.
6.
Breitung
,
K.
, 1989, “
Asymptotic Approximations for Probability Integrals
,”
Probab. Eng. Mech.
0266-8920,
4
(
4
), pp.
187
190
.
7.
Ditlevsen
,
O.
, 1979, “
Generalized Second Moment Reliability Index
,”
J. Struct. Mech.
0360-1218,
7
(
4
), pp.
435
451
.
8.
Hohenbichler
,
M.
, and
Rackwitz
,
R.
, 1981, “
Non-normal Dependent Vectors in Structural Safety
,”
J. Eng. Mech. Div., Am. Soc. Civ. Eng.
0044-7951,
107
(
6
), pp.
1227
1238
.
9.
Rackwitz
,
R.
, 2001, “
Reliability Analysis—A Review and Some Perspective
,”
Struct. Safety
0167-4730,
23
(
4
), pp.
365
395
.
10.
Youn
,
B. D.
,
Choi
,
K. K.
, and
Park
,
Y. H.
, 2003, “
Hybrid Analysis Method for Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
1050-0472,
125
(
2
), pp.
221
232
.
11.
Du
,
X.
, and
Chen
,
W.
, 2004, “
Sequential Optimization and Reliability Assessment Method for Efficient Probabilistic Design
,”
ASME J. Mech. Des.
1050-0472,
126
(
2
), pp.
225
233
.
12.
Choi
,
K. K.
,
Tu
,
J.
, and
Park
,
Y. H.
, 2001, “
Extensions of Design Potential Concept for Reliability-Based Design Optimization to Nonsmooth and Extreme Cases
,”
Struct. Multidiscip. Optim.
1615-147X,
22
(
5
), pp.
335
350
.
13.
Liang
,
J.
,
Mourelatos
,
Z. P.
, and
Tu
,
J.
, 2004, “
A Single Loop Method for Reliability-Based Design Optimization
,” in
Proceedings of the ASME Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Salt Lake City
,
Utah
,
September
28–October
2
, DETC2004-57255.
14.
Chen
,
X.
,
Hasselman
,
T. K.
, and
Neill
,
D. J.
, 1997, “
Reliability Based Structural Design Optimization for Practical Applications
,” in
Proceedings of the 38th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Part 4 (of 4)
, Vol.
4
, pp.
2724
2732
,
Kissimmee
,
FL, USA
, Apr. 7–10.
15.
Chan
,
K.-Y.
,
Skerlos
,
S. J.
, and
Papalambros
,
P. Y.
, 2005, “
An Adaptive Sequential Linear Programming Algorithm for Optimal Design Problems with Probabilistic Constraints
,” to appear J. Mech. Des. (November).
16.
Papalambros
,
P. Y.
, and
Wilde
,
D. J.
, 2000,
Principles of Optimal Design
,
Cambridge University Press
, New York,
2nd edition
.
17.
Williams
,
B. C.
, and
Cagan
,
J.
, 1996, “
Active Analysis: Simplifying Optimal Design Problems Through Qualitative Partitioning
,”
Eng. Optimiz.
0305-215X,
27
(
2
), pp.
109
137
.
18.
Hansen
,
P.
,
Jaumard
,
B.
, and
Lu
,
S. H.
, 1989, “
Some Further Results on Monotonicity in Globally Optimal Design
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
111
(
3
), pp.
345
352
.
19.
Li
,
B.
, and
Chen
,
Y.
, 1986, “
Improved Optimum Design Technique Using Global Monotonicity Analysis
,” in
ASME Design Engineering Technical Conference
, p.
8
, Columbus, OH.
20.
Papalambros
,
P. Y.
, and
Wilde
,
D. J.
, 1980, “
Regional Monotonicity in Optimum Design
,”
ASME J. Mech. Des.
1050-0472,
102
(
3
), pp.
497
500
.
21.
Zhou
,
J.
, and
Mayne
,
R. W.
, 1984, “
Monotonicity Analysis and Recursive Quadratic Programming in Constrained Optimization
,” in
ASME Design Engineering Technology Conference
, p.
6
, Cambridge, MA.
22.
Zhou
,
J.
, and
Mayne
,
R. W.
, 1984, “
Monotonicity Analysis and the Reduced Gradient Method in Constrained Optimization
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
106
(
1
), pp.
90
94
.
23.
Li
,
H. L.
, and
Papalambros
,
P. Y.
, 1988, “
Combined Local-Global Active Set Strategy for Nonlinear Design Optimization
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
110
(
4
), pp.
464
471
.
24.
Li
,
H. L.
, and
Papalambros
,
P. Y.
, 1988, “
Interior Linear Programming Algorithm Using Local and Global Knowledge
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
110
(
1
), pp.
58
64
.
25.
Azarm
,
S.
, and
Papalambros
,
P. Y.
, 1984, “
Automated Procedure for Local Monotonicity Analysis
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
106
(
1
), pp.
82
89
.
26.
Rao
,
J. R.
, and
Papalambros
,
P. Y.
, 1991, “
PRIMA. a production-based implicit elimination system for monotonicity analysis of optimal design models
,”
ASME J. Mech. Des.
1050-0472,
113
(
4
), pp.
408
415
.
27.
Choy
,
J. K.
, and
Agogino
,
A. M.
, 1986,
SYMON: Automated symbolic monotonicity analysis system for qualitative design optimization
. In
Proceedings of the ASME International Computers in Engineering Conference and Exhibition
, Vol.
1
,
207
212
,
Chicago
,
IL
, USA.
28.
Gill
,
E. P.
,
Murray
,
W.
, and
Wright
,
H. M.
, 1981,
Practical Optimization
,
Academic Press
, New York.
29.
Fletcher
,
R.
, 1987,
Practical Methods of Optimization
.
John Wiley and Sons
, New York,
2nd edition
.
30.
Lee
,
J. J.
, and
Lee
,
B. C.
, 2005, “
Efficient evaluation of probabilistic constraints using an envelope function
,”
Eng. Optimiz.
0305-215X,
37
(
2
), pp.
185
200
.
31.
Pomrehn
,
L. P.
, and
Papalambros
,
P. Y.
, 1994, “
Global and discrete constraint activity
,”
ASME J. Mech. Des.
1050-0472,
116
(
3
), pp.
745
748
.
32.
Stark
,
H.
, and
Woods
,
J. W.
, 2002,
Probability, Random Processes, and Estimation Theory for Engineers
,
Prentice-Hall
, New Jersey, USA,
3rd edition
.
33.
Papalambros
,
P. Y.
, 1990,
A knowledge-based framework for constraint activity identification in optimal design of aircraft structures
. In
M.
Klieber
, editor,
Artifical Intelligence: Applications in Computational Engineering
, pages
209
226
,
Ellis Horwood Ltd
, New York.
34.
Fletcher
,
R.
,
Leyffer
,
S.
, and
Toint
,
Ph.-L.
, 1998, “
On the global convergence of an SLP-filter algorithm
,”
University of Dundee Report
,
98
(
13
), pp.
1
11
.
35.
Hock
,
W.
, and
Schittkowski
,
K.
, 1980,
Test Examples for Nonlinear Programming Code
,
Springer-Verlag
, New York.
36.
Venkayya
,
V. B.
, 1971, “
Design of optimum structures
,”
Comput. Struct.
0045-7949,
1
(
1-2
), pp.
265
309
.
You do not currently have access to this content.