The complex turbulent flow regimes encountered in many thermal-fluid engineering applications have proven resistant to the effective application of systematic design because of the computational expense of model evaluation and the inherent variability of turbulent systems. In this paper the integration of a novel reduced order turbulent convection modeling approach based upon the proper orthogonal decomposition technique with the application of robust design principles implemented using the compromise decision support problem is investigated as an effective design approach for this domain. In the example application considered, thermally efficient computer server cabinet configurations that are insensitive to variations in operating conditions are determined. The computer servers are cooled by turbulent convection and have unsteady heat generation and cooling air flows, yielding substantial variability, yet have some of the most stringent operational requirements of any engineering system. Results of the application of this approach to an enclosed cabinet example show that the resulting robust thermally efficient configurations are capable of dissipating up to a 50% greater heat load and a 60% decrease in the temperature variability using the same cooling infrastructure.

1.
Pope
,
S. B.
, 2000,
Turbulent Flows
,
Cambridge University Press
, New York.
2.
Launder
,
B. E.
, and
Spalding
,
D. B.
, 1972,
Lectures in Mathematical Models of Turbulence
,
Academic Press
, London.
3.
Schmidt
,
R.
, and
Iyengar
,
M.
, 2005, “
Effect of Data Center Layout on Rack Inlet Air Temperatures
,” ASME Inter PACK, San Francisco, ASME, IPACK2005-73385.
4.
Schmidt
,
R.
,
Karki
,
K. C.
,
Kelkar
,
K. M.
,
Radmehr
,
A.
, and
Patankar
,
S. V.
, 2001, “
Measurements and Predictions of the Flow Distribution Through Perforated Tiles in Raised Floor Data Centers
,” The Pacific Rim/ASME International Electronics Packaging Technical Conference and Exhibition, Kauai, Hawaii, IPACK2001-15728.
5.
Patel
,
C.
,
Bash
,
C.
,
Belady
,
C.
,
Stahl
,
L.
, and
Sullivan
,
D
, 2001, “
Computational Fluid Dynamics Modeling of High Compute Density Data Centers to Assure System Inlet Air Specifications
,” IPACK’01 - The Pacific Rim/ASME International Electronics Packaging Technical Conference and Exhibition, Kauai, Hawaii: ASME, IPACK2001-15622.
6.
Iwasaki
,
H.
, and
Ishizuka
,
M.
, 1998, “
Natural Convection Air Cooling Characteristics of Plate Fins in a Ventilated Electronic Cabinet
,” ITHERM 1998 - Eight Intersociety Conference of Thermal and Thermomechanical Phenomena in Electronic Systems, Seattle, pp.
124
129
.
7.
Patel
,
C. D.
,
Sharma
,
R.
,
Bash
,
C.
, and
Beitelmal
,
M.
, 2002, “
Thermal Considerations in Cooling of Large Scale High Compute Density Data Centers
,” ITHERM 2002 - Eight Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, San Diego, pp.
767
776
.
8.
Shrivastava
,
S.
,
Sammakia
,
B.
,
Schmidt
,
R.
, and
Iyengar
,
M.
, 2005, “
Comparative Analysis of Different Data Center Airflow Management Configurations
,” ASME InterPACK, San Francisco, ASME, IPACK2005-73234.
9.
Rambo
,
J.
, and
Joshi
,
Y.
, 2003, “
Multi-Scale Modeling of High Power Density Data Centers
,” InterPACK03 - The Pacific Rim/ASME International Electronics Packaging Technical Conference and Exhibition, Kauai, Hawaii, InterPack2003-35297.
10.
Rambo
,
J.
, and
Joshi
,
Y.
, 2006, “
Thermal Modeling of Technology Infrastructure Facilities: A Case Study of Data Centers
,” in
The Handbook of Numerical Heat Transfer
,
W. J.
Minkowycz
,
E. M.
Sparrow
, and
J. Y.
Murthy
, eds.,
Taylor and Francis
, New York, pp.
821
849
.
11.
Shah
,
A.
,
Carey
,
V.
,
Bash
,
C.
, and
Patel
,
C.
, 2005, “
Energy-Based Optimization Strategies for Multi-Component Data Center Thermal Management: Part I, Analysis
,” ASME InterPACK, San Francisco, ASME, IPACK2005-73137.
12.
Iyengar
,
M.
,
Schmidt
,
R.
,
Sharma
,
A.
,
McVicker
,
G.
,
Shrivastava
,
S.
,
Sri-Jayantha
,
S.
,
Amemiya
,
Y.
,
Dang
,
H.
,
Chainer
,
T.
, and
Sammakia
,
B.
, 2005, “
Thermal Characterization of Non-Raised Floor Air Cooled Data Centers Using Numerical Modeling
,” ASME InterPACK, San Francisco, ASME, IPACK2005-73387.
13.
Bhopte
,
S.
,
Agonafer
,
D.
,
Schmidt
,
R.
, and
Sammakia
,
B.
, 2005, “
Optimization of Data Center Room Layout to Minimize Rack Inlet Air Temperature
,” ASME InterPACK, San Francisco, ASME, IPACK2005-73027.
14.
Holmes
,
P.
,
Lumley
,
J. L.
, and
Berkooz
,
G.
, 1996,
Turbulence, Coherent Structures, Dynamical Systems and Symmetry
,
Cambridge University Press
, Great Britain.
15.
Chen
,
W.
,
Allen
,
J. K.
,
Tsui
,
K.
, and
Mistree
,
F.
, 1996, “
A Procedure for Robust Design: Minimizing Variations Caused by Noise Factors and Control Factors
,”
ASME J. Mech. Des.
1050-0472
118
, pp.
478
485
.
16.
Mistree
,
F.
,
Hughes
,
O. F.
, and
Bras
,
B.
, 1993. “
The Compromise Decision Support Problem and the Adaptive Linear Programming Algorithm
,” in
AIAA Structural Optimization: Status and Promise
,
Kamat
,
M. P.
ed.,
AIAA
, Washington, DC, pp.
247
286
.
17.
Simpson
,
T.
,
Peplinski
,
J.
,
Koch
,
P.
, and
Allen
,
J.
, 2001, “
Metamodels for Computer-Based Engineering Design: Survey and Recommendations
,”
Eng. Comput.
0177-0667,
17
, pp.
129
150
.
18.
Loeve
,
M.
, 1995,
Probability Theory
,
Van Nostrand
, Princeton, NJ.
19.
Rambo
,
J.
, and
Joshi
,
Y.
, 2005, “
Reduced Order Modeling of Steady Turbulent Flows Using the POD
,” ASME Summer Heat Transfer Conference, San Francisco, ASME, HT2005-72143.
20.
Rolander
,
N.
, 2005, “
An Approach for the Design of Data Center Server Cabinets for Thermal Efficiency
,” MS thesis, George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta.
21.
Lumley
,
J.
, 1967, “
The Structure of Inhomogeneous Turbulent Flows
,” in
Atmospheric Turbulence and Radio Wave Propagation
,
Yaglom
,
A. M
, and
Tatarsky
,
V. I.
, eds.,
Nauka
, Moscow, pp.
166
178
.
22.
Aubry
,
N.
,
Holmes
,
P.
,
Lumley
,
J.
, and
Stone
,
E.
, 1988, “
The Dynamics of Coherent Structures in the Wall Region of a Turbulent Boundary Layer
,”
J. Fluid Mech.
0022-1120,
192
, pp.
155
173
.
23.
Sirovich
,
L.
, 1987, “
Turbulence and the Dynamics of Coherent Structures, Part II: Symmetries and Transformations
,”
Q. Appl. Math.
0033-569X
XLV
(
N3
), pp.
573
582
.
24.
Berkooz
,
G.
,
Holmes
,
P.
,
Lumley
,
J.
, and
Mattingly
,
J.
, 1997, “
Low-Dimensional Models of Coherent Structures in Turbulence
,”
Phys. Rep.
0370-1573,
287
, pp.
338
384
.
25.
Webber
,
G.
,
Handler
,
R.
, and
Sirovich
,
L.
, 1997, “
The Karhunen-Loeve Decomposition of Minimal Channel Flow
,”
Phys. Fluids
1070-6631,
9
(
4
), pp.
1054
1066
.
26.
Moin
,
P.
, and
Moser
,
R.
, 1989, “
Characteristic-Eddy Decomposition of Turbulence in a Channel
,”
J. Fluid Mech.
0022-1120,
200
, pp.
417
509
.
27.
Ball
,
K.
,
Sirovich
,
L.
, and
Keefe
,
L.
, 1991, “
Dynamical Eigenfunction Decomposition of Turbulent Channel Flow
,”
Int. J. Numer. Methods Fluids
0271-2091,
12
, pp.
585
604
.
28.
Rambo
,
J
, and
Joshi
,
Y.
, 2003, “
Physical Models in Data Center Airflow Simulations
,” IMECE-03 - ASME International Mechanical Engineering Congress and R&D Exposition, Washington, DC, IMECE03-41381.
29.
Boucher
,
T. D.
,
Auslander
,
D. M.
,
Bash
,
C. E.
,
Federspiel
,
C. C.
, and
Patel
,
C. D.
, 2004, “
Viability of Dynamic Cooling Control in a Data Center Environment
,” Inter Society Conference on Thermal Phenomena, IEEE, pp.
593
600
.
30.
Sharma
,
R. K.
,
Bash
,
C.
,
Patel
,
C. D.
,
Friedrich
,
R. J.
, and
Chase
,
J. S.
, 2003, “
Balance of Power: Dynamic Thermal Management for Internet Data Centers
,” Whitepaper issued by Hewlet Packard Laboratories Palo Alto, Technical Report No. HPL-2003-5.
31.
Patel
,
C.
,
Sharma
,
R.
,
Bash
,
C.
, and
Graupner
,
S.
, 2003, “
Energy Aware Grid: Global Workload Placement based on Energy Efficiency
,” International Mechanical Engineering Congress and Exposition, Washington, DC, IMECE 2003-41443.
32.
VanGilder
,
J. W.
, and
Schmidt
,
R.
, 2005, “
Airflow Uniformity Through Perforated Tiles in a Raised-Floor Data Center
,” ASME InterPACK, San Francisco, ASME, IPACK2005-73375.
33.
Radmehr
,
A.
,
Schmidt
,
R.
,
Karki
,
K. C.
, and
Patankar
,
S. V.
, 2005, “
Distributed Leakage Flow in Raised-Floor Data Centers
,” ASME InterPACK, San Francisco, ASME, IPACK2005-73273.
34.
Fluent Incorporated
, 2001,
Fluent v. 6.1 Users Manual
,
Fluent Inc.
, Lebanon, NH.
35.
Rolander
,
N.
,
Rambo
,
J.
,
Joshi
,
Y.
, and
Mistree
,
F.
, 2005, “
Robust Design if Air-Cooled Server Cabinets for Thermal Efficiency
,” ASME InterPACK, San Francisco, ASME, IPACK2005-73171.
36.
Deane
,
A. E.
,
Kevrekidis
,
I. G.
,
Karniadakis
,
G. E.
, and
Orszag
,
S. A.
, 1991, “
Low-Dimensional Models for Complex Geometry Flows: Application to Grooved Channels and Circular Cylinders
,”
Phys. Fluids A
0899-8213,
3
(
10
), pp.
2337
2354
.
37.
Ma
,
X.
, and
Karniadakis
,
G. E.
, 2002, “
A Low-Dimensional Model for Simulating Three-Dimensional Cylinder Flows
,”
J. Fluid Mech.
0022-1120
458
, pp.
181
190
.
38.
Park
,
H. M.
, and
Cho
,
D. H.
, 1996, “
Low Dimensional Modeling of Flow Reactors
,”
Int. J. Heat Mass Transfer
0017-9310
36
, pp.
359
368
.
39.
Sirovich
,
L.
, and
Tarman
,
I. H.
, 1998, “
Extensions to the Karhunen-Loeve based Approximations of Complicated Phenomena
,”
Comput. Methods Appl. Mech. Eng.
0045-7825
155
, pp.
359
368
.
40.
Patankar
,
S. V.
, 1980,
Numerical Heat Transfer and Fluid Flow
,
McGraw Hill
, New York.
41.
Phadke
,
M. S.
, 1989,
Quality Engineering using Robust Design
,
Prentice Hall
, Englewood Cliffs, NJ.
42.
Gill
,
P.
,
Murray
,
E. W.
, and
Wright
,
M. H.
, 1981,
Practical Optimization
,
Academic Press
, London.
43.
Rambo
,
J.
, and
Joshi
,
Y.
, 2005, “
Arranging Servers in a Data Processing Cabinet to Optimize Thermal Performance
,”
ASME J. Electron. Packag.
1043-7398
127
(
4
), pp.
452
459
.
44.
Mourelatos
,
Z. P.
, and
Liang
,
J.
, 2004, “
An Efficient Unified Approach for Reliability and Robustness in Engineering Design
,” NSF Workshop on Reliable Engineering Computing, Savannah, Ga, pp.
127
138
.
You do not currently have access to this content.